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1. Introduction

Hadamard (1910) may have been the first applied mathematician to derive
a formula for the sensitivity of a Partial Differential Equation (PDE) with
respect to the shape of its domain. This opened the field of Optimal Shape
Design (OSD). But the field as we know it now, really began with Cea et
al (1973) as an offspring of optimal control theory (Lions (1968)) and the
calcul of variation. So OSD has borrowed the vocabulary of control theory:
the design is done by minimizing a cost function, which depends upon a state
variable, i.e. the solution of the PDE, itself function of a control, the shape.

Among others, Pironneau (1973), Murat-Simon (1976), Cea (in Haug et al
(1978) gave methods to derive optimality conditions for the continuous prob-
lems and Begis et al (1976) Morice (1976) and Marrocco et al (1978), in the
same school, for the discretized problems.

Theoretical results on existence of solutions were obtained by Chenais
(1975), Sverak (1992) Bucur et al, (1995) and Liu et al (1999); a counter ex-
ample to existence was produced by Tartar (1975) in a key paper which linked
optimal shape design with homogenization theory in what is now known as
"topological optimization" .

Most design engineers do their optimization by hand, intuitively. But it is
generally believed that intuitive optimization is not possible beyond a hand-
fold of degrees of freedom. When the design parameters are few, say less than
a hundred, sensitivity with respect to shape can be obtained by finite differ-
ence approximation (take two (-close shapes and approximate the derivative
by the difference of the values of the cost function divided by f) and essen-
tially no additional programming is needed beyond the state equation solver.
But the precision may not be sufficient and stiff problens cannot be solved
this way.

There are also commercial packages which find the minimum of a func-
tional with respect to parameters and require from the user only a subroutine
to evaluate the cost function for a given design. These packages are usally
based on local variation methods (Powell(1970)), involving polynomial fits of
the functional from point evaluations. They are expensive here because they
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require O(P2) solutions of the flow solver where P is the number of design
variables.

But for 3D wings for example, there are hundreds of design parameters
so that shape optimization requires a complete numerical treatment with a
robust differentiable optimization package and a precise sensitivity analysis
with respect to the shape of the wing.

A numerical fluid solver can be vewed as a C function with an input and
an output , the design variables which define the wing shape and the drag
for instance. Sensitivity analysis finds the gradient of the cost function with
respect to the design variables. It is difficult when the fluid is compressible.
An alternative is to let the computer do it for you by using a software for
"Automatic Differentiation of programs" such as ADOL-C. This approach
is extremely convenient and we shall give here a brief presentation. But to
understand it fully it is better to know the analytical approach as well; this
is the object of the paragraph on sensistivity analysis. More details can be
found in Pironneau (1983), Neittanmaki (1991), and Banichuk (1990).

2. Examples

Before going to industrial examples let us present two laboratory examples
which will serve to illustrate the method of solution chosen here.

2.1 Two Laboratory Test Cases: Nozzle Optimization

For clarity we will consider an optimization problem for incompressible irro-
tational inviscid flows

min{ { l\7cp - udl2 : -Llcp = 0 in fl, oncpli:W = g}
an JD

or with a stream function in 2D

min{ { 1\7'1/1 - vdl 2 : -Ll'l/l = 0 in fl, 'I/Ilan = 'I/Ir}
an JD

In both problems one seeks for a shape which produces the closest velocity
to Ud in the regionD of fl. In the second formulation the velocity of the flow
is given by

(02'1/1, -Ol'l/!)T so Vd = (Ud2, -Udl)T.

An application to wind tunnel or nozzle design for potential flow is obvi-
ous but it is laboratory because these are usually used with compressible
flows.
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2.2 Minimum weight of structures

In 2D linear elasticity, for a structure clamped in a part r l of its boundary
r =8D and subject to volume forces F and surface shear g, the displacement
U= (UI,U2) is found by solving for u:

U E Va = {u E H 1 (D)2 : ulr1 = O}

1[8ttu· v + f..Lf.ij (U)f.ij (v) + Af.ii (U)f.jj (v)] = r g.v + r F.v 'Vv E Va
w Jan Jn

1
where f.ij = 2(8iuj + 8jUi),

Many important problems of design arise when one wants to find the structure
with minimum weight yet satisfying some inequality constraints for the stress
such as in the design of light weight beams for strengthening of airplane floors,
or for crank shaft optimization...

For all these problems the criteria for optimisation is the weight

where p is the density of the material.
But there are constraints on the maximum stress (itself a linear tensor

function of the displacement tensor f.)

T(X) . d < Tdmo»

at some points x and for some directions d.
Indeed, a wing for instance, will behave differently under spanwise and

chordwise load. Moreover, due to coupling between physical phenomena, the
surface stresses come in part from fluid forces acting on the wing. This im
plies many additional constraints on the aerodynamical (drag, lift, moment)
and structural (Lame coefficients) characteristics of the wing. Therefore, the
Lame equations of the structure must be coupled with the equations for the
fluid (fluid structure interactions). This is why most optimization problems
nowadays require the solution of several state equations ("multiphysics").

2.3 Wing design

An important industrial problem is the optimization of the shape of a wing
to reduce the drag. The drag is the reaction of the flow on the wing, its
component in the direction of flight is the drag proper and the rest is the
lift. A few percents of drag optimization means a great saving on commercial
planes.

For viscous drag the NavierStokes equations must be used. For wave drag
the Euler system is sufficient.
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For a wing S moving at constant speed U oo the force acting on the wing
is in a cartesian frame

F = (Fx,Fy,Fzf = h[J-L('VU + 'VuT ) - -hpn

The first integral is a viscous force, the so called viscous drag and the second
is called the wave drag. In a frame attached to the wing, and with uniform
flow at infinity, the drag is the component of F parallel to the velocity at
infinity (i.e. F.u oo ) . The viscosity of the fluid is J-L and p is its pressure.

The Navier-Stokes equations govern u the fluid velocity, () the tempera-
ture, p the density and E the energy:

cAp + 'V.(pu) =0

1
8t(pu) + 'V.(pu @u) + 'Vp - J-LL1u - 31l'V('V'u) = 0,

2
8drhoE] + 'V. [upE] + 'V . (pu) = 'V. {l1:'V(} + [1l('Vu + 'VuT ) - 31l)I 'V . u]u}

u2

whereE=T+(} p=('y-l)P(}

The problem is to minimize

J(S) = F.uoo

with respect to the shape of S.
There are several constraints:

- A geometrical constraint: the volume of S greater than a given value, else
the solution will be a point.

- An aerodynamic constraint: the lift must be greater than a given value or
the wing will not fly.

The problem is difficult because it involves the compressible Navier-Stokes
equations at high Reynolds number. It can be simplified by considering only
the wave drag i.e. the pressure term only in the definition of F ( Jameson
(1987)). When the viscous terms are dropped in the Navier-Stokes equations
(Il = r;, = 0). Euler's equations remain. The problem is

min rpn - U oos is
8tp + 'V.(pu) = 0

8t(pu) + V.(pu@u) + vp = 0,

8drhoE] + 'V . [upE] + V . (pu) = 0

u2

with E = T + () P = ('y -r- l)p()
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However, it is now well known that viscous effects have an important
impact on the final shape (Mohammadi (1997)). Indeed, in transonic flows
for instance the shock position is 30 percents chord upstream due to viscous
effects.

Assuming irrotational flow an even greater simplication replaces the Euler
equations by the compressible potential equation b = 1.4 for air):

u=Vcp, p=(1_IVcpI2/ l h - l l , p=p', \1.pu=O.

Or even, if at low Mach number, by the incompressible potential flow equa
tion:

u = \1cp, -.1cp = O.

Constraints on admissible shapes are numerous:

 Minimal thickness, given length.
 Minimum admissible curvature
 Minimal angle at the trailing edge ...

Another problem arises due to instability of optimal shapes with respect to
data. It will be seen that the leading edge of the solution is a wedge. Thus if
the incidence angle of U oo is changed the solution becomes bad. A multipoint
functional must be used in the optimization, for some weighting factors (Ji

J(5) =
l

at given lift F i x U oo where the F i are computed from NavierStokes equations
with boundary conditions u =

2.4 Stealth Wings

2.4.1 Maxwell equations. The optimization of the farfield energy of a
radar wave reflected by an airplane in flight requires the solution of Maxwell's
equations for the electric field E and the magnetic field H:

EatE + \1 x H =fJ \1.E = 0, /LatH  \1 x E =0 \1.H = O.

The dielectric and magnetic coefficient E, /L are constant in air but not so in
an absorbing medium. One variable, H for instance, can be eliminated by
differentiating in t the first equation:

1
EattE + v x (-v x E) = 0,

/L

from which it is easy to see that Y.E = 0 is always zero if it is zero at initial
time.
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2.4.2 Helmholtz equation. Now if the geometry is cylindrical with axis z
and if E = (0,0, Ez)T then the equation becomes a scalar wa.ve equa.tion for
Ez . Furthermore if the boundary conditions are periodic in time at infinity,
E; = Revooeiwt and compatible with the initial conditions then the solution
has the form E; = Rev(x)eiwt where v, the amplitude of the wave E; of
frequency w , is solution of:

Notice the wrong sign for ellipticity in the "Helmholtz" equation.

Remark
. 1. This equation arises naturally in accoustics. So the technics of this

paragraph applies also there.
2. In vacuum tu: = e2,e the speed of light, so for numerical purposes it is a

good idea to rescale the equation. The critical parameter is then the number
of waves on the object, i.e. welL where L is the size of the object.

2.4.3 Boundary conditions. The reflected signal on solid boundaries r
satifies

v = 0 or OnV =0 on r
depending on the type of waves ( Transverse Magnetic polarization requires
Dirichlet condition).

When there is no object this Helmholtz equation has a simple sinusoidal
set of solutions which we call Voo :

voo(x) = a sin(k· x) + (3 cos(k . x),

where k is any vector of modulus Ikl = we. Radar waves are more complex
but by Fourier decomposition, they can be viewed as a linear combination of
such simple unidirectional waves.

Now if such a wave is sent on a object, it is reflected by it and the signal at
infinity is the sum of the original wave with the reflected wave. So it is better
to set an equation for the amplitude of the reflected wave only U = v - Voo '

A good boundary condition for u is difficult to set; one possibility is

OnU + iau =O.

Indeed when u = eid .x , GnU + iau = i(d· n + a)u, so that this boundary
condition is "transparent" to waves of direction d when a = -d· n. If we
want this boundary condition to let all outgoing waves pass the boundary
best when it is normal to it, we will set a=1.

To sumarize, we set for u the system in the complex plane:
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anu + i u =0 on roo

u = 9=_eik .x on r.

where aD = r u roo. It can be shown that the solution exists and is unique.
Notice that the variables have been rescaled, w is we, /-l is /-l//-lvacuum'

Usually the criteria for optimization is a minimum amplitude for the reflected
signal in a region of space D at infinity (hence D is an angular sector). For
instance one can consider

min{! lV'ul2 :
SEO r oonD

where /-l is different from one only in a region very near rand schematizes
an absorbing paint.

But constraints are aerodynamical as well, ( lift above a given lower limit
for instance) and thus requires the solution of the fluid part as well. The
design variables are:

- The shape of the wing
- The thickness of the paint
- The material characteristics (E, /1-) of the absorbing paint.

Here again, the theoretical complexity of the problem can be appreciated
from the following question:

Would ribblets of the size of the radar wave improve the design?

Actually homogenization can answser the question as in Achdou (1991) (see
also Artola (1991) and Achdou et 301 (1991)) It shows that indeed ribblets im-
prove the design and in practice absorbing paints on the wing surface work
in the same manner.

Homogenization shows that periodic surfacic irregularities are equivalent
to new" effective" boundary conditions

u = 0 replaced by au + anu = 0

and so the optimization can be done with respect to a also. Hence the con-
nections between OSD and topological optimization.

2.5 Optimal brake water

As a first approximation, the amplitude of sea waves sa.tisfies Helmholtz'
equation

V'(/-l' yu) + f.U = 0
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where f.l is a function of the water depth and f. is proportional to the wave
speed.

With approximate reflection and damping whenever the waves collide on
a brake water S which is surrounded by rocks we have

8n u + au =0 on S.

At infinity a non reflecting boundary condition can be used

8n(u - uoo ) + ia(u - uoo ) = 0

The problem is to find the best S with given length so that the waves have
minimum amplitudes in a given harbour D:

min! u2
.

S D

2.6 Ribblets

Consider a flat plate with groves dug on the surface parallel to the mean flow.
It has been shown that such configurations have less drag per unit surface
area than the flat plate (Figure 5).

The phenomenon is turbulent in its principle (Moin (1993)) because these
groves or ribblets trap the large vortices and retard the formation of horse
shoe vortices. It is beyond the limit of present computers to hope to solve
such problems by optimal design methods. However even the laminar case
leads to an optimization and it is not true that the flat plate is the best
surface for drag per unit surface area for a Poiseuille flow.

Consider ribblets which are well within the logarithmic layer and near the
viscous sublayer. Apply the Couette flow approximation. Then the problem
is:

min U oo ' ([v(V'u + V'uT ) - pn]
E JE

with (u,p) solution of

u = ( and p = p( z)
u(x,y)

-vdu + V'p = ( ) = 0
!!E. A
&z - V4.lx,yU

A solution with p = kz is found and u solves

-vdu + k = 0
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The domain is 2D and with a periodic distribution of ribblets, the domain is
one cell containing one ribblet E with UI17 = 0 and a Neumann condition on
the upper artificial boundary which simulates the matching with the bound
ary layer S and periodic conditions on the lateral boundaries of the cell. The
problem becomes:

min( _ r au)
17 117 an

subject to (u, k) solution of:

-vLlu + k = 0 in fl
au

u = 0 on E an = 0 on S

u = x  periodic In u = d.

The last constraint on the flux has been added to fix k:

2.7 Sonic boom reduction

Some supersonic carrier are considered too noisy. An optimization of the
shock wave jump and of the jet noise can be performed with respect to the far
field noise. Again the full problem involves the NavierStokes equations but
simpler approximations like Lighthill's turbulent noise source approximation
can be used and in the far field it is the wave equation which is solved.

3. Existence of Solutions

3.1 Generalities

Assume that 'IjJ(fl) is the solution of

-Ll'IjJ = f in fl, 'ljJle.a = 0

and that
Ud E L 2(fl), f E H-1(fl)

For simplicity we have translated the nonhomogeneous boundary conditions
of the laboratory examples above into a right hand side in the PDE (f =
Ll'IjJr).

Let 0 :::) D be two given closed bounded sets in R d , d = 2,3 and consider

with
0= {fl C R d

: 0 J a J D, Ifll = I}.
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where IDI denotes the area in 2D and the volume in 3D.
Chenais (1975) showed that there exists a solution provided that the class

O is restricted to D which are:

1. locally on one side of their boundaries,
2. verifying the Cone Property.

Let D, (x, d) be the intersection with the sphere of radius and center x
of the cone of vertex x direction d and angle e.

Cone Property: There exists e such that for every x E aD there exists
d such that D J D,(x,d) .

These two conditions imply that the boundary cannot oscillate too much.
Denote by 0, this set of admissible shapes.

Theorem:
The problem

min J(D)
nEO,

has at least one solution

Proof
The proof is done by considering a minimizing sequence Dn. The cone prop
erty implies that there exists D such that Dn -t D in a sense sufficiently
strong so that

'ljJ(Dn)ID -t'ljJ(D)ID, in H1(D)

L'V'ljJ(D)'Vw =Lfw Vw E H1(D).

Hence J(Dn) -t J(D) and D is a solution.

In 2D an important result has been obtained by Sverak (1992):

Theorem.
If 0 =ON is the set of open sets containing D (possibly with a constraint

on the area such as area ;::: 1) and whose number of connected component is
bounded by N then

min J(D) = r IV'ljJ(D) - vdl2
ON JD

has a solution.

In other words, two things can happen to minimizing sequences:
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- Either accumulation points are solutions
- Or the number of holes in the domain tends to infinity (and their size to

zero).

This result is false in 3D as it is possible to make shapes with spikes such that
a 2D cut will look like a surface with holes and yet the 3D surface remains
singly connected. Bucur-Zolezio (1995) obtained an extension to 3D of the
same idea by using capitance (see also Liu et al. (1999) for a result using
equi-continuity for boundaries having the segment property (a segment of
fixed size must fit in and out of the domain with one end on the boundary,
at each boundary point) for the Neumann problem).

A corollary of their result can be summarized as:

If the boundary of the domain has the fiat cone insertion property (each
boundary point is the vertex of a fixed size 2D truncated cone which fits inside
the domain) then the problem has at least one solution.

The proof of Sverak's theorem is sketched in Appendix A for the reader
to see the kind of tools which are used in such studies.

3.2 Sketch of the proof of Sverak's Theorem

The proof relies on a compactness result for the Hausdorff topology and on
a result of potential theory (capacitance).
The Hausdorff distance between 2 closed sets A, B is

8(A,B) = max{d(B, A),d(A, B)} where d(A, B) = supd(x,B).
xEA

For this distance we have

Proposition
If Fn is a uniformly bounded sequence, then there is a closed bounded set

F and a subsequence converging in the sense of Hausdorff to F.

Equivalently let fln be a sequence of open sets in R d with fln C O. Then
one can extract a subsequence, also denoted by fln converging in the sense
of Hausdorff to a fl, that is, verifying:

ve C fl,3m: e c flnVn 2: m and Vx E 0 - fl,3xn EO - fln: x n -t x.

So a minimizing subsequence for (2) will have the following properties

J(fln) -t inf J(fl)

-d1j;n = f in fln, 1/) E H1(fln) and 1j;n -t 1/J in H 1(O) weakly with,

-L1.1j; = f in a, inf J(fl) = kl"V1j; - Vdj2.
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But we do not know how to show that

'I/J = 0 in 0 - n

For this an information on the characteristic function Xn of 0 - nn is needed
because

0= Xn'I/Jn -t x'I/J, =} 'I/J(x) = 0 pp si X(x)::I O.

Sverak uses another argument. First he shows that it is sufficient to study
the case f = 1. If nn denotes the solution in HJ(nn) of -L1nn = 1 then
the convergence of nn towards its weak limit is almost uniform (this is the
difficult point) when the number of connected components is finite.

This result from the theory of sub-harmonic functions is true in 3D also
with an hypothesis of capacitance. Hence a generalization can be found in
Bucur et al (1995) where by existence is shown under the only restriction
that one can fit a flat cone (a 2D cone as in Chesnais but for a 3D surface,
so it is much more general) at each point of the boundary.

Corollary
Given N and the 2D-Navier-Stokes equations for incompressible flows

there exists an optimal wing profile with given area in 2D in the class of
uniformely bounded domains with less than N connected components

Proof
Let nn be a minimizing sequence. Let un be the corresponding solution

of the Navier-Stokes equations :

-vL1un+\7.(un@un)+V'pn=o, \7·un=O in nn, unls=O, =uoo

By hypothesis nn is bounded by O. From the Navier-Stokes equations it is
easy to see that un extended by 0 in 0 is bounded in HJ (0)2, so there exists
a subsequence which converges weakly; let u be the limit. Now

But now if

-L1un + \7pn = - fn \7. u" = 0

I" -t f in W-1,P(0),

then u is solution of the same Stokes problem with f instead of [": It remains
to show that ula-s = 0 but that is done for the Stokes problem exactly as
for the Laplace equation since Stokes equation is a Laplacian in the space of
solenoidal fields.
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4. Solution By Optimization Methods

4.1 Gradient Methods

At the basis of gradient methods is the Taylor expansion of

J: V-tR

where, if V is a Hilbert space,

J(v + AW) = J(V) + A< GradvJ,w > +o(Allwll), Vv,W E V, VA E R.

where V is a Hilbert space with scalar product < ',' > and GradvJ is the
element of V given by Ritz' theorem and defined by

< GradvJ, w >= Vw E V.

By taking w = -pGradvJ(v), with 0 < p «; 1 we find:

J(v + w) - J(v) = -pIIGradvJ(v)11
2 + o(pIIGradvJ(v)lI)

Hence if P is small enough the first term on the right hand side will dominate
the remainder and the sum will be negative:

pIiGradvJ(v)112 > o(pIiGradvJ(v)lI) => J(v + w) < J(v)

Thus the sequence defined by :

vn+1 = vn - pGradvJ(v), n = 0,1,2, ...

makes J(v") monotone decreasing. We have the following result:

Theorem: If J is continuous, bounded from below, and +00 at infinity, then
all accumulation points v* of vn satisfy

GradvJ(v*) = o.
This is the so called optimality condition of the order 1 of the problem. If
J is convex then it implies that v* is a minimum; if J is strictly convex the
minimum is unique.

By taking the best p in the direction of descent ui" = -GradvJ(vn),

p" = arg min J(v" + pw") ( meaning that J(vn + pnwn) = min J(vn + pw"))
p p

we obtain the so called method of steepest descent with optimal step size
We have to remark however, that minimizing a one parameter function is

not all that simple. The exact minimum cannot be found in general, except
for polynomial functions J. So in the general case, several evaluations of J
are required for an approximate minimum only.
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A closer look at the convergence proof of the method shows that it is
enough to find p" with the following property (Armijo rule):

Given 0 < 0: < fJ < 1, find p such that

-pfJIIGradvJ(vn )1I2 < J(vn - pGradvJ(vn )) - J(vn ) < -po:IIGradvJ(v
n)1I2

It can be found by relating fJ to 0:, in the following fashion:

Choose two numbers 0 < Po < 1, W E (0,1) and find p = where k is
the first integer such that

J(vn - - J(vn) <
<

4.2 Newton Methods

J(vn - - J(vn)

Newton's method with optimal step size applied to the minization of J is

Compute w solution of J" vvW = -GradvJ(vn),

Set vn+1 = vn + pw

with p = argmin J(vn + pw)
p

Near to the solution it can be shown that p" -+ 1 so that it is also the root
finding Newton method applied to the optimality condition

GradvJ(v) = 0

It is quadratically convergent but it is expensive and usually J" is difficult
to compute, so a quasi-Newton, where an approximation of J" is used, is
prefered. For instance, a directional approximation can be found by:

Choose 0 < f << 1, w approximate solution of

+ fW) - GradvJ(vn)) = J" vv(vn).w,
e

4.3 Constraints

In constrained optimization, we can have equality or inequality constraints
on the optimization parameters or the state variables. When using gradient
methods, equality constraints are usually taken into account by penalization
in J while inequality constraints are treated by projection when they con-
cern the optimization parameters directly. If they concern the state variables,
usually they are transformed to equality constraint and then penalized.
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Consider the following minimization problem under equality and inequal
ity constraint on the parameters and state:

min J(x, u(x», A(x, u(x)) = 0,
x

subject to

B(x,u(x») :S Bo, C(x,u(x) = Co, Xmin:S x:S Xmax,

here A, B, C involve the parameters x and the state variable u (state con
straints) while the last constraints is a box constraint on the parameters only.
The problem can be approximated by "penalty"

subject to
A(x, u(x» = 0, Xmin < X < Xmax'

(3 and 'Yare penalization parameters. They are usually difficult to choose.
At each iteration of the gradient method, the new prediction is kept inside

this box xmin, xmax by projecting the gradient. To improve the treatment
of constraints interior point algorithms can be used.

5. Sensitivity Analysis

Gradient and Newton methods require gradients of the cost function J and
for this we need to identify an underlying Hilbert structure for the parameters
of J, the shape. Two ways have been proposed:

 Assume that all admissible shapes are obtained by mapping a reference
domain n: fl = T(fl). Then the parameter of J is T : Rd -+ Rd. A
possible Hilbert space for T is the Sobolev space of order m and it seems
that m = 2 is a good choice.

 What is important is a Hilbert structure for the tangent plane of the pa
rameter space, meaning by this that the Hilbert structure is needed only
for small variations of fl, so that one works with local variations defined
around a reference boundary E by

reo:) = {x + o:(x)nE(x) : X E E}

where ns: is the normal to E at z and fl is the domain which is on the left
side of the oriented boundary r(o:). Then the Hilbert structure is placed
on 0:, for instance H"'(E).
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Comments It is generally believed that PDE-parameter optimization
(here T) is more difficult than shape optimization numerically.

Before proceeding we need the following preliminary result. In most cases
only one part of the boundary T is optimized, we call this part 5.

Proposition
Consider a small perturbation 5' of 5 given by

5' = {x + ,\an : x E 5}

where a is a function of x via the curvilinear abscissa of x on 5 and ,\ is a
positive number destined to tend to zero. Denote fl' = fl(S'). Then for any
f E HI (C), C J fl u sr

lIS') 1 - lIs) 1 - l(s'l-n(slnll(s'l f - l(s)-lI(s)nll(s,) 1

=,\ l a] + o(Aliall)

and so lim![ r 1 - r Il = ro]
'\-+0 A i lI(S') i lI(S) is

Remark If S has an angle not all variations S' can defined by local vari-
ation on 5 but it can be shown that it is a sufficient class of variations.

Similarly the following can be proved (Pironneau(1983), p87).

Proposition
If 9 E HI (5) and if R denotes the mean radius of curvature of 5 in any local
basis (l/R = l/RI + 1/R2 in 3D) then

lim![ rg- rgl = ra(ong-!!...)
'\-+0'\ is, is is R

5.1 Sensitivity Analysis for the nozzle problem

Consider

min ! IV'¢ - udl2
811EO D

subject to :

-t1¢ = 0 in fl, a¢ + oncP = 9 on ofl,

the class of admissible shapes 0 being the set bounded domains with Lips-
chitz continuous boundaries containing D; but we will not worry about this
constraint set for the time being and assume all constraints are verified by
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all variations encountered. In practice however we may have even additional
constraints such as 0 C C.

If a = 0 it is the potential flow formulation and if a -+ 00, 9 = af it
becomes the stream function formulation.

Assume that some part of T = an is fixed, the unkown part being called
S.

The variational formulation of the Laplace equation with Fourier boundary
condition is

Find ¢ E HI (n) such that

£\!¢. \!w +i adnu=i gw, Vw E H 1(n).

The Lagrangian of the problem is

L(¢,w,S)=! 1\!¢-UdI2 + r \!¢.\!w+!(a¢w-gw)
D In(s) r

and the minimization of J is equivalent to the min-max problem

minmaxL(¢, v, S).
s,</> v

Recall that

J's(S, ¢) = L's(¢, v, S) at the solution ¢, v of the min-max

Let us write that the solution is a saddle point of L. As L is linear in wand
quadratic in ¢, stationarity in these variables is simply

o>.L(¢+>.J,v,S) = 2!(\!¢-Ud).\!J+ r \!J.\!v
D In(s)

+ i aJv =0, VJ

o>.L(¢,v+>.w,S) = r \!¢·\!w
In(s)

+ i (a¢W - gw) = 0 Vw

Acording to the 2 propositions above, stationarity with respect to S is

lim - L(<1>,w,S)]
>'-+0 1\

Is a[\!¢· \!w
and so we have shown that

1
+ on(a¢w - gw) - /i(a¢w - gw)] = 0
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Theorem: The variation of J with respect to the shape deformation
S' = {x + a(x)ns(x) : xES} is

JJ == J(S', ¢>(S')) - J(S, ¢>(S)) = l aV¢>·Vv

+ l a [On (a¢>v - gv) - - gv)) + o(lIall)

where v E HI (fl(S)) is the solution of

r Vv+! = 0, E HI (fl(S))
J.a(S) r

Notice that the boundary conditions for ¢> and v being

On¢> + a¢> = g, onv + av = 0

we can eliminate a from the optimality conditions and find

where Os denotes the derivative with respect to the curvilinear coordinate of
S.

Corollary: With homogeneous Neumann conditions (a = g = 0)

JJ = laos¢>. osv + o(lIall)

and with homogeneous Dirichlet conditions on S (a -t 00,9 =0)

JJ = -l aon¢> . onv + o(lIall)

5.2 Discretization with Triangular Elements

For discretization let us use the simplest, a Finite Element Method of degree
1 on triangles. Unstructured meshes are better for OSD because they are
easier to deform and adapt for a general shape deformation.

More precisely, fl is approximated by fl h = Tk where the Tk are
triangles such that

- The vertices of oflh are on ofl and the corners of ofl are vertices of oflh .

- Tk n 1}, (k f:- I) is either a vertex or an entire edge or empty.
- Triangulations are indexed on the longest edge, of size h, and as h -t 0 no

angle should go to zero or tt .
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The Sobolev space Hi (il) is approximated by

Hh = {Wh E CO(!?h) : whlTk E pI Vk}

where pi = pi (Tk ) is the space of linear polynomials. The discrete problem
in variational form is

min J(qi, ... ,qnv
) = r IIV4>h-(uh)dIl 2i;

subject to 4>h E Hh solution of :

r V4>h' Vwi + r a4>wi = r gwi, Vj E [1, ...,nvlinh ir ir
The dimension of H h equals nv the number of vertices qi of the triangulation
and every function 4>h belonging to Hh is completely determined by its values
on the vertices 4>h(qi).

The canonical basis of Hh is the set of so-called hat junctions defined by

Wi E Hh, wi(qi) = 8ii

Denoting by 4>i the coefficient of 4>h on that basis,

n v

4>h(X) =L 4>iwi(x ),
1

the PDE

r V 4>h .Vwi + r a¢Wi = r gwi,Vj E [1, ... ,nvlinh ir ir
yields a linear system for P = (4)i)

Ap = F, Aii = r VWiVWi + r awiwi,
L, irh

Hence in matrix form the problem is to find Q = (qi) solution of

min {J(Q) = pT Bp - 2U· P : A(Q)p = F}
QEQ

with Bii =1VWiVWi, o, = 1Ud .Vwi.

where Band U are independent ofQ if the triangulation is fixed within D. For
simplicity we shall assume that F does not depend on Q, i.e. that 9 = 0 on S.

Remark
The method applies also to Dirichlet conditions treated by penality, as

explained before. However, in practice it is necessary for numerical quality to
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use a lumped quadrature in the integral of the Fourier term, or equivalently
to apply ¢ = ¢r at all points of r by

Aij = [ \lwi\lwj + pt5ijt5(qiEn), Fj = p¢r(qj)t5(qj E rh).i;
where p is a large number.

We present below a computation of discrete gradients for a Neumann
problem but the method applies also to Dirichlet problems with this modifi
cation.

5.3 Discrete Gradients

A straightforward calculus of variation gives

oj = 2(BiJ? - U) . oiJ? with AM = -(8A)iJ?

Introducing IJI solution of ATIJI = 2(BiJ? - U) leads to

8J = (ATIJI) . 8iJ? = IJITAM = -IJI· ((t5A)iJ?)

To evaluate 8A we need 3 lemmas. If 8Q is a variation of vertex positions
(i.e. each vertex qi moves by 8qi), we define

n v

8qh(x) = L 8qiwi(x), 'l/x E flh
1

and denote by the new domain.

Lemma 1 (see Figure 4)

8wj = - \lwj . t5qh + o(118qh1D

Lemma 2

Lemma 3

where 8s denotes the derivative with respect to the curvilinear abscissa and t
the oriented tangent vector of r h .

In these the integrals are sums of integrals on triangles or edges and so f
and 9 can be piecewise discontinuous across elements or edges.

Proofs
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Proofs for Lemma 1 & 2 are in Pironneau (1983), so only the proof of
Lemma 3 is given here.
Consider an edge ei = qi - qi and an integral on that edge

Then

M = (8qi - 8qi) . (qi _ qi)llqi - qi ll-2II

+lIqi - qi ll l 1

«1 - >')8qi + >'8qi)"ilg(qi + >.(qi - qi»d>. + o(8qh)

=! gt· os8qh+! 8qh"ilg+ o(8qh)
r h r,

Now putting the pieces together (we omit to write the remainders o( »,
8 { "ilwi. "ilwi = { "ilwi. "ilwi + { ["il8wi. "ilwi + "ilwi . •"il8wi]
lnh lonh lnh

= { ["il. (8qh"ilwi . "ilwi) - "il("ilwi . 8qh) . "ilwi - "ilwi . "il("ilwi . 8qh)]i;

8! Wi. wi = ( Wi. wi +! [8wi. wi +Wi . 8wi]
r; lsr, t;

=! wi. wit· os8qh+! 8qh"il(wi . wi)
r h r;

-! [("ilwi. 8qh) . wi + ("ilwi . 8qh) .wi]
rh

giving

Proposition

8J = { "il'IjJr ("il . 8qh - "ilr5qh - "il8qf)"il th +a! 'ljJh' 4">htT"il8qht

+o(118qhID

where t is the tangent vector to rh, 'ljJh = L: lJIiwi and IJI is solution of
ATIJI = 2(B4"> - U).

Consequently an iterative process like the method of steepest descent to
compute the optimal shape will move each vertex of the triangulation in the
direction opposite to the partial derivative of J with respect to the vertex
coordinates (Ek is the kt h unit vector of Rd ) :
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ql := ql- p[ r "h/JrCv· (Ekw i) - V'(Ekwi) - V'(Ekwi)T)V'<Phi;
+a r 1/Jh' (PhtTV'(Ekwi)t]

irh

5.4 Implementation problems

Computation of discrete derivatives of cost functional is, as we have seen a
crafty work, only reasonnable for simple problems.

Another difficulty is that for practical applications the optimization problem
is changed all the time by the designer until a feasible situation is reached.
A first cost function and constraint sets are set, the solution is found to
violate certain unforeseen constraints so the constraint set is changed... Fi
nally multipoint optimization is desired so the cost function and equations
are changed... and each time the discrete gradients must be computed. Au-
tomatic differentiation is the cure but as we shall see it has its own difficulties.

Mesh distortion is also a big problem. After a few iterations the mesh is
no longer feasible. A remeshing will induce interpolation errors which may
cause divergence in the optimization process if done too often. Automatic
mesh adaption and motion is the cure, it will also be explained in a coming
chapter.

Finally boundary oscillation is also a frequent curse usually due to a wrong
choice of scalar product in the optimization algorithm. We will give some
elements of answer below.

5,5 Optimal shape design with Stokes flow

The drag and lift are the only forces at work in the absence of gravity. If the
body is symmetric and its axis is aligned with the velocity at infinity then
there is no lift and therefore we can equally well minimize the energy of the
system, which for Stokes flow gives the following problem:

min J(fl) = v r lV'ul2
nEG in

subject to :

-vLlu + V'p=0, V' . u =°in fl
uls = 0, ulroo = U oo

An example of 0 is :

0= {fl, afl = suroo,lsl = I},
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where S is the domain inside the closed boundary S and lSI is its volume or
area in 2D.

Sensitivity analysis is as before; let J/' E 0 be a domain "near" J/ defined
by its boundary I" = oJ/', with

r = {x + a(x)n(x), with a = regular, small, '<Ix E r = oJ/}

Define also
<5u = u(J/') - u(J/) == u' - u

while extending u by zero in S. Then

<5J = v<5( r lV'uI2 ) = v r lV'ul2 + 2v r V'<5u: V'u + o(<5J/,<5u).in i; in
When V'u is smooth, then

v r lV'ul2 = v! alV'ul2 + 0(lIallc2) = v! alonul2 + 0((llallc2).ion r r
Now Su, Sp satisfy

-vLl<5u + V'<5p = 0, V'. <5u = 0 in J/

<5ulroo = 0, <5uls = -aonu

Indeed the only non-obvious relation is the boundary condition on S. Now
by a Taylor expansion

u'(x + an) = u'(x) + o:onu'lsl + o(lal) = 0 since u'lsl = O.

Now u Is= 0 so,
<5uls = -o:onuls.

Consequently (A : B means Lij Ai j B i j )

vi V'<5u:V'u=v i(-LlU).<5U+v [Onu.<5u=

i pV' . s« - [P<5u. n + v [ OnU . <5u =

[ (vOnU - pn) . <5u = - Is vo:lon ul2 ,

because, if 8 denotes the tangent component,

n· Onu = -8' O.U = 0 on r.
We have proved the

Proposition 3 : The variation of J with respect to J/ is :

<5J = -v Is alonul 2 + 0(0:)

Consequences
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- If 0 = {S : S J C}, as 18n u l2 > 0, then C is the solution (no fairing
around C will decrease the drag in Stokes flow).

- If 0 = {S : V 01 5 = I}, then the object with minimum drag saisfies
8nu· S constant on S. Lighthill (cf. Pironneau (1973)) showed that near
the leading and the trailing edge the only possible axisymmetric flowwhich
can achieve this condition must have conical tips'of half angle equal to 60°.

- The method of steepest descent gave a shape near to the optimal shape
after one iteration (cf. Pironneau (1973)), and it was confirmed in Bourot
(1976) by a Newton method.

A similar analysis can be done for the Navier-Stokes equation for incompress-
ible flows.

The Optimal shape undeer the constraint that the volume is fixed and that
the shape be axisymmetric, is given on Figure 1.

5.6 OSD for laminar flow

Consider the minimum drag/energy problem with the Navier-Stokes equa-
tions.

min J(n) = v [1V'uI2 subject to
SEO in

-vLlu + 'Vp + u'Vu = 0, 'V. u = 0, in n
uls =0, ulr00 =uoo

and with 0 = {S : 151 = I}, r =8n= Soo u r.
Let us express the variation of J(n) in terms of the variation 0: of n.

As for the Stokes problem,

oj = J(n') - J(n) = v [ l'Vul2 + 2v [ 'VuV'Ou + o(ou, 0:).ion in
but now the equation of Ou is no longer self adjoint

-vLlou + 'Vop + u'VOu+Ou'Vu = o(Ou),

'V. Ou = 0

8ulr00 = 0, 8uls = -0:8n u

So an adjoint equation is introduced with an adjoint state (P, q) :

-vLlP + 'Vq - u'VP - ('VP)u = -2vLlu, 'V. P =0 in fl

Plr =0.

Proposition
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The variation of J with respect to n is :

flJ = vh - Onu), Onu + o(a)

For the chosen admissible set 0 we have that flJ 0 for every a with
Ir a=O. So, the optimality condition for this problem is :

onu, (onP - Onu) = constant on S.

Proof
Multiply the equation for (P, q) by flu and integrate by parts

fa v\lP : \lflu -hOnP' flu - q\l . flu +P\l . (u i8l flu + flu i8lu)

= 2 In v\lu : \lflu - 2£vonu· flu.

Then use the equation of fJu multiplied by P and integrated on n

fa v\lP : \lflu + P\l . (u i8l flu + flu i8lu) =0

So

fJJ = v r l\lul2 + r a(onP - 2onu) .OnuJs
=v Is a(I Onu l

2 + (On P - 2onu) .Onu)

6. Alternative ways

An alternative method to obtain the discrete optimality conditions is to see
that

Therefore
Afl4i = -(flA)4i + flF

with

flA = r \lwi . \lwj + r \lfJwi
. \lwj + r \lwi

. \lflwj
in In

Next use Lemma 4 for the first term and lemma 3 for the two others

flA = fa \lwi
. \lwj\l . flq - fa (\lflq\lw i

) . \lwj - fa (\lflq\lwj) . \lwi

with the convention that the function of x, flq=L flqiWi.
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7. Problems Connected With The Numerical
Implementation

7.1 Independence from J

Note that the adjoint state p depends on the criterion t. On the other hand
if the software is to be provided as a black box to the industry it must be
such that it is easy to :

- change the design criterion
- add geometrical contraints.

Suppose that we minimize a functional of the general form :

J(¢,il) = tf(¢)dX, ¢= {¢i},j = 1, ... ,r.

Since the second member of the adjoint state equation is 8E, we must be
able to compute independently of J(¢, il).

This computation can be done by finite differences because:

BE J(¢h + 8¢h, ilh) - J(¢h, ilh)- ,....,
B¢j - 8¢j

This computation is not expensive. The number of elementary compu-
tations is of order N. Indeed, if N is the number of the mesh nodes, the
calculation cost is of the order N, which is the same cost as the solution of a
laplacian (cf. Arumugam(1989»).

7.1.1 Add geometrical constraints. To add geometrical constraints is
easy if we give a parametrized description of the domain and its triangulation.

If the boundary to optimize is described by r parameters aj, we can define
it by a curve (ex. spline) defined by aj and then generate the triangulation
with vertices {qi},i = 1, ... ,N on the curve.

Since in this case only the parameters aj move independently, we must
compute the variation of E with respect to aj' But

BE '" BE aqf .8- = L...J""ijk' 8-'z = 1, ... ,N,k = 1,2.
a) k,i qi a)

Therefore, we must be able to compute and this is done also by finite,
differences :

aqf ,...., qf'(aj + 8a)) - qf(aj)
aaj - 8aj
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which is not computationaly expensive.

Remark : One could think that we can compute everything by finite differ
ences, even

8E J(qf + oqf)  J(qf)
8qf == oqf

but this is far too expensive, since we have to solve the state equation every
time we compute J(qf). So, the computational cost is 2N *O(N) == O(N2

)

which is the cost of solution of N partial differential equations.

7.1.2 Other discretization methods. We have shown above that the fi
nite element method is well suited to Optimal Shape Design because the same
principles can be used on the discrete system. In Brackman (1987) and Maki
nen (1990) an extension to Isoparametric elements can be found. Chenais
(1993) shows also that with Cea's artificial domain velocity it is possible to
have the discrete derivatives equal to the continuous derivatives discretized.
Finally Finite Volume methods computations of derivatives can be found in
Dervieux (1993).

7.1.3 Automatic Differentiation of Programs.. Usually the computer
program for the PDE solver is written before hand and the optimal shape
design analysis comes after.

The idea is to say that the PDE is known from a long sequence of equalities
each of which is easy to differentiate. If each program line is thus differentiated
a linearized solver is found. Then an adjoint equation is easier to found.

A review article on these methods can be found in (Gilbert et al (1991)
for example).

Example
Consider the problem

min {J(Ul, U2) = Xl = UI j X2 = + un
Ut,Uz

Direct Method
The automatic differentier ADOLC of Griewank works as follows. The

problem above is represented by the following program

Xl = UI
2 2

X2 = ax! + U2

J - 2- X 2

After each line one inserts the differentiated line and obtain
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Xl = UI

dXI = dUI

2 2X2 = aXI + U2

dX2= 2aXIdXI + 2U2du2

J =
dJ = 2X2dx2

This is not too hard to do automatically because each line involves only
usual functions whose derivative can be computed by symbolic computation.
The resulting program gives, for prescribed diu, the directional derivative

dJ = dUl +

Inverse method
From this it is possible to compute the partial derivatives by choosing

dUj = dij, but the computing cost is prohibitive when the control space
dimension is large. Then another strategy is possible.

Construct the Lagrangian by multiplying each line of the computer pro
gram by a lagrangian multiplier Pi:

L = J +PI (Xl  uI) +P2(X2  +
Then as in control theory write that L has a saddle point at the solution:

=PI  2aXIP2 =0

= 2X2+ P2 =0

= PI

= - 2U2P2
At the solution = so the last two lines gives us the anwser. Notice
that the first lines define the adjoint of the problem and they must be com
puted from down up (hence the name reverse method). It is not easy to set
up this strategy automatically. The program Odyssee implements the method
for FORTRAN programs with some restrictions (no GOTO...).

Handling DO loops
Consider the equation

2tFu .
- dx 2 + smu = 1, Vx E]O, 1[, u(O) = u(I) = 0,

discretized by a finite difference method and a GaussSeidel solution of
the linear system:
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do i=O .. N
u_{i}=O

do k=1..M
do i=l .. N-l

v_{i}=sin u_{i}
u_{i} =(u_{i+l} +u_{i-l}) - (v_{i}-1)/N-2)/2

end_do
end_do.

As is often the case, while programming, the intermediate variable Vi is
introduced.

A DO loop being in fact identical to a long sequence of program state-
ment let us introduced a lagrange multiplyier for each line and construct the
Lagrangian:

N M N-l

L = L:>?Ui + 2:= 2:= pf(Vi - sin Ui) + - Ui+l - ui-d +Vi - 1)
o k.=l 1

This Lagrangian contains only simple function so it can be differentiated
with respect to U and V by any formal computation program (Maple, Math-
ematica...) Thus the adjoint program is obtained:

M
8L 0 k 2a =Po -
Uo k=l

M
8L 0 k 2( k k k)
8u. = Pi + COS U i + N 2PN+i - PN+i-l - PN+i+l

, k=l

M
8L 0 k 2a =PN -
UN k=l

M
8L k k )
-8. = + PN+i
v, k=l

While there seems to be no conceptual difficulties, there is a dramatic increase
of lagrangian variables due to DO loops.

The limit of the method is the memory of the computer.
Notice however that if we set P; = pf, the usual discrete adjoint

equations are obtained, as if the linear system was solved in one go. This
important remark can save us from trouble when handling iterative methods
for systems.

Handling IF statements
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Branching instructions are no problem. consider the case where sin u is
replace by sin lui and programmed as

if Ui > 0 then Vi =sin Ui

else Vi =sin( -Ui)

The idea is to consider that we have 2 programs, one for each result of the
if statement. Then there will be two lagrangian and after differentiation one
puts them back into the if structure and obtain

8. Regularity Problems

Consider an optimal shape design problem

min J{S)
SES

with admissible shapes defined locally around E fixed and smooth

S = {x + o(x)n(x) : X E E, a E Hg(E) }

Suppose we know a X E L2(E) such that

J(S(o + 80» = J(S(o» + t X(s)80(s)ds + 0(1180112)

It is not a good idea to apply a gradient method in L2 like

om+l = am - PXm

because am E H 2(E) does not imply am+! E H 2(E) as one usually cannot
expect X E H:i(E).

So let us define { E H5 (E) by

d4{
ds 4 =X, on E,

d{
{= - = 0 on 8E.

ds

Then

J(S(o + 80» = J(S(o» + t X(s)80(s)ds + 0(1180112)

r d2 {=J(S(o» + J
E

ds 2 ds 2 60(s)ds + 0(1160112)

Now we can do
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8.1 Application

Consider again the laboratory problem of Figure 2 and its discretization by
the FInite Element Method (Figure 3).

J(S) = Iv lu - udl2 : -du = I, u E HJ(n), scan

for which we know that for some y(s) = x(s) + 88a(s), 8 E]O, I[we have

1au op I 1op 02u 2
8J = - - £3 2 (y(s»8a(s) ds

Eunun 2 Eun on

with p solution of

-dv = W,

ds 4 = X, on E, = ds = 0 on aE.
might be difficult in practice, especially in 3D because PDEs on surfaces may
be tricky to solve. Instead consider = viE with

ow
-dw =0, an IE =X,

P E HJ(n), -dp = 2(u - ud)ID

With the regularity S E HJ(E) we have u,p E H 2(n),

Setting by

Lemma 1
The operator X { == AX is positive definite and X E L2(E) ::} E H2(E)

Proof Let

-dw' = 0,
ow'an IE = X', -dv' =w',

and note that

, raw' t «, t .•
<x,Ax>= i

E
on v= in V'wV'v=in w w

Proposition
The following algorithm preserves the regularity of the variables:

am+1 = am _

Remark
Oden et al suggested to use {= u· nlE where

->'du + J-tV'(V' . u) = 0, O"nn(u)IE = X, u· s = 0

because

Ix: = Ix: O"nn(U')U· n =1(>.vuV'v + J-tv· uV'· v)

Although it is also a smoothing process it is less regualar than the one above.
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8.2 Discretization

Recall that a finite element discretization of the problem is

. h "N jWIt U = LJI UjW ,

Recall that
OWj = -'Vwj 'Oqh, Oqh = Loqjwj

j

and that

so that we have the

Proposition

Proof

N

OU = L OUjWj + UjOWj = OUh - 'VUh . Oqh
1

i 'V(OUh - 'VUh .Oqh)'VWj - i'Vuvwj'Voqh

1 . 1
+ 'V. ('VU'VWJOqh) + -oujlqiEr = 0

fl

oj = j 20u(u - Ud) =1'Vp'VOUh + L PjOUj
D fl qJEr

Proposition

8J = { 'Vu· 'Vp Oqh . n + ( ['Vu . 'Vp]Oqh . n +O(IOqhl)
ls lEdges

This is because
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8.3 Consequence

• It is clear the the discrete optimization process tends to the continuous
one. But... do we have the necessary regularity?
• It is not necessary to account for the motion of the inner mesh points if
h« 1
• One should not use the gradient with respect to the inner points to move
them because it is an order of magnitude smaller: Wi = (wi, wi)T

qi +- qi - pLV'uT(V'Wi + V'Wi
T
- IV'· Wi)V'p

Use the smoothers, so the complete algorithm is

1. Solve

2. Solve

3. Solve

L>"V'U: V'Wi + /-LV'. UV'· Wi =LV'uT(V'Wi +V'Wi
T
- V'. Wi)V'p

4. Move the points of the mesh by

qi +- qi - pUi

9. Consistent Approximations

OSD is expensive; there is a great economical advantage to combine the
optimization algorithm with mesh refinement so as to obtain a speed up
similar to multigrid.

For standard optimization, E. Polak (1998) developped a tool which he
calls the theory of consistent approximation" which we apply here. The fol-
lowing is a summary of results obtained jointly with N. Dicesare and E. Polak.
For more details see Dicesare et al (1998).
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9.1 Algorithm

The problem is to minimize J (z) in O. The discrete problem is indexed by a
discretization parameter h: minimize Jh(Zh) in Oh.

Assume that 0 is a Hilbert space. Let

Algorithm 1

1. Choose a converging sequence of discretization spaces {Oh n } with 0 h n C
Ohn +l for all n. Choose ZO,fO,/3 E]O, 1[.

2. Set n = 0, e = fO, h = ho
3. Compute z;:' by performing m iterations of a descent algorithm on Ph

from starting point zn so as to achieve

fh(z;:') > -f

4. Set f = /3f, h = hn+t, zn+l = z;:', n = n + 1 and go to Step 3.

The mathematical result is that if Ph epi-converge to P then any accu-
mulation point z* of {z"] generated by Algorithm 1 satisfies B(z*) =O.

9.2 Problem Statement

Consider a simple model problem where the shape is to be found that brings
u, solution of a PDE, nearest to Ud in a subregion D of the entire domain fl.

The unknown shape T is a portion of the entire boundary afl: it is
parametrized by its distance 0: to a reference smooth boundary E. To prevent
an excess of oscillation the problem is regularized.

More concretely with the following notations (f << 1),

DC fl, Ud E H1(D), g E H1(fl), Ie K c R, E = {x(s) s E K}

we consider

min J(o:) = { (u - Ud)2 + e ( I 12

o:EHg(l) JD JE S

au
subject to U - .1u = 0 in fl(o:), an Irca) = glrca),

where r(o:) = afl(o:) = {x(s) + a(s)n(x(s)) : s E K}

where a is the extension by zero in K of 0: which is only defined on I.

Recall that

Hg(I) = {o: E £2(1) 0:',0:" E £2(1), o:(a)= o:'(a) = 0 'Va E a!}
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and that Ila" 110 = IlcPa/ds2110 is a norm in that space.

Let us denote the unknown part of the boundary by

5(a) = {x(s) + a(s)n(x(s» : s E I}

For simplicity let us assume that 9 is always zero on 5.

9.3 Discretization

The discrete problem is

min J(a) = { (U-Ud)2+ t (
aELhCHg(I) iD iE s

subject to { (uv + Y'uY'v) = ! gv \Iv E Vh, U E Vh
in(a) rIa)

where Vh is the usual Lagrange Finite Element space of degree 1 on triangles
except that the boundary triangles have a curved side because 5(a) is a cubic
spline.

The space L h is the finite dimensional subspace of H6(I) defined as the set
of cubic splines which passes through the vertices which would we would have
used otherwise to define a feasible polygonal approximation of the boundary.
This means that the discretization of [} is done as follows

1. Give a set of n, boundary vertices qi1, ... , qinl, construct a polygonal
boundary near E

2. Construct a triangulation of the domain inside this boundary with an
automatic mesh generator, i.e, Mathematically the inner nodes are the
oretically linked to the outer ones by a map

qi =Qi(qi1, ... ,qin/), nf < j < nv

3. Construct r(a), the cubic splines from the qi1, ... , qinl , set a to be the
normal distance from E to r(a).

4. Construct Vh by using triangular finite elements and overparametric
curved triangular elements on the boundary.

This may seem complex but it is a handy construction because the discrete
cost function Jh coincide with the continuous J and because Lh is a finite
subspace of the (infinite) set of admissible parameters H6.

We proceed and verify the hypothesis of the theorem to apply Algorithm
1.
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9.4 Optimality Conditions: the continuous case

As before, by calculus of variations

r d2o.
=2£(u - + 2 JE ds2 ds2

with E HI ([}(o:» and

r + V'8uV'v)+ r 80:(uv+ V'uV'v) =0 'Vv E HI([}(o:».
J il(o.) J E

Introduce an adjoint p E HI ([}(0:»

r (pq + V'pV'q) = 2 r (u - Ud)q, 'Vq E HI
Jil(o.) JD

i.e.

Then

p - .:1p = IDu, op = 0
an

8J = -L80:(up + V'uV'p-

9.4.1 Definition of 8. So we should take

i.e. solve

B= dB =0 on 01
ds

9.5 Optimality Conditions: the discrete case

Let wi be the hat function attached to vertex qi. If some vertices qi vary by
8qi we define

8qh(X) = L 8Qjwi (x)
i

and we know that (Pironneau[1983})

8wk = -V'wk ·8qh

r f = rV'. (j8qh) + o(l8Qhl}
L, Ja

Hence
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Furthermore and by definition of JUh

J L UiWi =L(JuiWi + UiJw i) = JUh + Jqh . YUh
i

the partial variation JUh is found by

J r (Uhwj + YUh vwj) = r(v . (UWjJqh) + JUhwj + VJUhvwj)

in(o) in

+1(UhJqh . vw
j + YUh VJqhvwj + UhJw j + YUh vJw

j) = 0

Hence

1(JUhw j + VJUhvw
j
=

1(VUh(VJqh + vJq[)vwj - (Uhw j + YUh . vwj)v . Jqh)

So introduce an adjoint Ph E Vh

1(Phw j + \1Phvw
j)

= 2L(Uh - Udh)W
j

Vj

And finally

9.6 Definition of e,

Let e1 = (l,O)T, e2 = (0, l)T be the coordinate vectors of R2
, let x' be the

vector of R2 of components

Because the inner vertices are linked to the boundary ones by the maps Qj,
let us introduce

Then obviously

u : . 1dZa. dZJa.
OJ=L e .8qJ + 2 ds2 ds Z

1 E

It is possible to find a /3 so as to express the first discrete sum as an integral

on I; of d;:?; it is some sort of variational problem in Lh:
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! d2/3d2{»,.J _ s .
d

2 d 2 - nE, j = 1, ... ,nf; /3 E Li;
E ,8 8

where ),i is the cubic spline obtained by a unit normal variation of the bound-
ary vertex qi only.
Then the "derivative" of Jh is the function 8 E 1-+ /3(8) + 2W(8) and the
function fh is

(}h = -11/3I1H5(I)
Remark This may be unnecessarily complicated in practice. A pragmatic
summary of the above is that /3 is solution of a fourth order problem, so
why not set a discrete fourth order problem on the normal component of the
vertex themselves. In the case f =0 this would be

_ + _ + = ,

,0 ,I mf-I rn] 0
qn=qn=qn =qn =

and then the norm of the second derivative of the result for (}h

e« -(L - +
i

9.7 Hypothesis of the Theorem

The following is shown in Dicesera et al (1999)

- Inclusion h' < h Oh C Oh.
- it Continuity The cost functions are continuous in z

an a, In -+ J.

Similarly in the discrete case, the spline is continuous with respect to the
vertex position so

. . H 2 (I )
qt n -+ qt -2---t ah, JJ: -+ Jh.

Consistency Va, 3ah -+ a with Jh -+ J.
if the following is observed:
- Corners of the continuous curve are vertices of the discrete curves
- the distance between boundary vertices converges uniformly to zero.

- Continuity of () Conjecture : There exists e such that Q E Hg u E
H3/Z+f(D).
Arguments: We know that Q E CO,I U E H3/ 2(Jerisson and Kenig
[??7)) and Q E C1.l U E H2(GrisvaTd [777)).
This technical point of functional analysis is need for the continuity of ().
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- Continuity of Oh(ah)
Recall that a variation bah (i.e. a boundary vertex variation bqj, j E E)
implies variations of all inner vertices ba, bqk,Vk
The problem is that 0 is a boundary integral on 17 and Oh is a volume
integral! We must explain why

bJh =£(\7uhCV'bqh + V'bqn\7Ph - \7uh . \7Ph\7 . qh

r dZa d2Ja ? r d4a
+2£ J

E
dsz ds2 bJ = - JE ba(up+ \7u\7p+ 2£ds4)

This is due to the fact that if \7X = 1+ \7Q, the jacobian matrix of the
mapping z -+ X = x+Q(x) ofR2 -+ R 2 is the linearization of the operator
which appears in the change of variable x -+ X(x):

So bJh is almost a surface integral:

r d4ah
bJh = - JE(Jqh . nE(uhPh + V'Uh \7Ph) + 2£ ds4 )

-!e[bqh . ne(uhPh + \7uh \7Ph)] + o(b%) + o(h)

where E is the set of edges of the triangulation, [.] the jump across the edges
and tvt: the normal to the edge E (the sign of this expression depends on
the choice of the normal tie).

9.8 Algorithm 3

An adaptation of Algorithm 1 to this case is

1. Choose an initial set of boundary vertices.
2. Construct a finite element mesh, construct the spline of the boundary.
3. Solve the discrete PDE and the discrete adjoint PDE.
4. Compute Oh (or its approximation (d. remark above»
5. if Oh > -£ add points to the boundary mesh, update the parameters and

go back to Step 2.

There are still several hypothesis to verify to make sure that Algorithm
3 converges. We proceed in a loose fashion and give only the general idea of
the proof.
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9.9 Convergence

It comes from the theory of Finite Element Error Analysis (Ciarlet[1975]):
Lemma

and the following triangular inequalities

• lahbh - abl = (ah - a)(bh - b)+ b(ah - a) + (bh - b)a

Ibllah - u]+ lallbh - bl + lah - al2 + Ibh - W
• IV'Uh - V'UIO,E 1V'(Uh - Ihu)lo,E + 1V'(lhu - U)IO,E

plus an inverse inequality for the first term and an interpolation for the
second.

10. Numerical Results

Numerical results with the local boundary variation method just described
have been obtained my PhD students. For details we send the reader to their
thesis, mostly at the Universite Paris 6:

- F. Angrand for a wing optimization with the transonic equation
- G. Arumugam for the optimization of ribblets in laminar flow
- A. Vossinis for the choice of a numerical algorithm, Newtown, GMRES or

Conjugate Gradient.
- F. Baron for the stealth wing problem and the harbour optimization

But very impressive results have been obained by Marrocco for the design
of an electromagnet and by Mohammadi for the design of 3D aircrafts and
wings by using automatic differentiation of programs.

Thanks to this last piece of work the method is now mature and efficient.
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