
Hamiltonian description of the heat conduction
E. Magyari, B. Keller

Abstract It is shown that the linear boundary value
problems of the heat conduction in a homogeneous slab
can be mapped on the initial value problem for a Hamil-
tonian motion whose phase-space trajectories are subject
to an additional restriction, the ``arrival condition''. The
physical consequences of this formal analogy for the
macroscopic heat conduction are discussed in detail.

List of symbols
a thermal diffusivity
an semiaxes of ellipses
bn semiaxes of ellipses
Bi1;2 Biot numbers
c speci®c heat
d slab-thickness
g�x� initial temperature pro®le
H Hamiltonian
H Hamiltonian matrix
I transfer invariant
n natural number
Nn normalization
p canonical momentum
P propagator
q heat ¯ux
t time
x position coordinate

Greek symbols
a1;2 heat transfer coef®cients
d in®nitesimal difference
dmn Kronecker symbol
k thermal conductivity
/ state-vector
# temperature ®eld
h generalized coordinate
X frequency; eigenvalue
s relaxation time

Subscripts
P Poisson-bracket

Superscripts
n eigenvalues, eigenstates
� t-derivative (dot)
0 x-derivative (dash)

1
Introduction
The Hamiltonian description developed originally for
mechanical systems (Sir W. R. Hamilton, 1835) has be-
come in the meantime one of the most powerful tools of
theoretical physics, playing a central role in statistical and
quantum mechanics, classical and quantum ®eld theories,
as well as in the contemporary theories of deterministic
chaos in conservative dynamical systems (see e.g. [1]). In
his celebrated work [2] Herbert Goldstein describes this
outstanding role of Hamiltonian formulation with the
words: ``The equal status accorded to coordinates and
momenta as independent variables encourages a greater
freedom in selecting the physical quantities to be desig-
nated as ``coordinates'' and ``momenta''. As a result we are
led to newer, more abstract ways of presenting the physical
content of mechanics. While often of considerable help in
practical applications to mechanical problems, these more
abstract formulations are primarily of interest to us today
because of their essential role in constructing the more
modern theories of matter''.

Our aim in the present paper is to point out, in agree-
ment with Goldstein's remark, that the Hamiltonian for-
malism also allows (in addition to some computational
advantages) a deeper insight in the abstract as well as in
the physical content of the macroscopic heat conduction.
For the sake of simplicity we restrict our arguments in this
paper to the case of the one dimensional heat conduction
in media with constant thermophysical properties.

2
Mapping the heat conduction on a Hamiltonian motion
The starting point of our considerations is the energy
conservation equation and Fourier's law:

qc
o#
ot
�x; t� � oq

ox
�x; t� � 0

q�x; t� � ÿk
o#
ox
�x; t� :

0 < x < d; t � 0 �1a; b�

We assume a homogenous slab of thickness d, subject to
the most general linear and homogeneous boundary con-
ditions:
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a1#�0; t� ÿ k
o#
ox
�0; t� � 0

a2#�d; t� � k
o#
ox
�d; t� � 0 :

�2a; b�

(``Newton heat loss'', [7]) and to the general initial con-
dition:

#�x; 0� � g�x� 0 � x � d : �3�
The temperature of the environment is considered con-
stant and is chosen as origin of the temperature scale. The
usual methods in heat conduction (see e.g. [3±7]) reduce
the system (1) by elimination of q to Fourier's well known
(second order) partial differential equation for #. By
contrast, the essential point of the Hamiltonian approach
developed below is to renounce to this operation and to
preserve # and q instead as independent dynamic variables
satisfying the ®rst order system (1) with its straightforward
physical message.

In this way, the separation ansatz #�x; t� � h�x�f �t� and
q�x; t� � ÿp�x�f �t�, where the minus sign was introduced
for later convenience, leads to:

#�x; t� � h�x�eÿt
s and q�x; t� � ÿp�x�eÿt

s : �4a; b�
Here s is the separation constant de®ned as _f =f � ÿ1=s
and the space-dependent parts h�x� and p�x� of # and ÿq,
respectively satisfy the ®rst order system:

h0 � 1

k
p; p0 � ÿkX2h with X2 � qc=ks :

�5a; b; c�
This system may now be converted easily into the Ham-
iltonian form:

h0 � oH

op
; p0 � ÿ oH

oh
�6a; b�

with the Hamilton function

H � 1

2k
p2 � 1

2
kX2h2 : �7�

It is now immediately seen that, if one considers x as the
``time variable'' of motion of a hypothetical point-particle
of mass k, coordinate h, momentum p and total energy H,
then the heat conduction described by Eqs. (5) may be put
in a one-to-one correspondence with an abstract me-
chanical motion, which is nothing than the harmonic os-
cillation of a spring-mass system of spring constant
k � kX2. The oscillations are carried out with the (circu-
lar) frequency X in a ®nite ``time interval'' extending from
the ``initial instant'' x � 0 to a prescribed ``arrival time''
x � d, respectively. Already the possibility of this formal
mapping of the heat conduction problem onto a Hamil-
tonian motion has interesting physical consequences as:

1). The Hamiltonian (7) is the generator of any in®ni-
tesimal con®guration-change:

fd#; dqg�f#�x� dx; t� ÿ #�x; t�; q�x� dx; t� ÿ q�x; t�g
�8�

of the temperature and ¯ux ®elds f#�x; t�; q�x; t�g at any
®xed time t. Accordingly, the relationship connecting the
values fh�x1�; p�x1�g to fh�x2�; p�x2�g is a canonical
transformation for any x1; x2 2 �0; d�, which in turn leads
for x1 � 0 and x2 � x to the general solution of the heat
conduction problem (see Eqs. (22) below).

2). As x varies from 0 to d, the ®eld con®gurations
change not somehow, but in such a way that the Hamil-
tonian (7) remains unchanged:

H � 1

2k
�p�x��2 � 1

2
kX2�h�x��2 � constant � I : �9�

The constant value I of H is determined by the values of h
and p on the boundaries:

I � 1

2k
�p�0��2 � 1

2
kX2�h�0��2

� 1

2k
�p�d��2 � 1

2
kX2�h�d��2:

�10�

On this ground, I � H will be referred to as con®guration-
or transfer invariant of the system. The existence of this
conservation-law is a direct consequence of the transla-
tion-symmetry (i.e of invariance under x! x� const.) of
Eqs. (6).

3). The temperature h (as a generalized coordinate) and
the heat ¯ux p (as the conjugate momentum) play totally
equivalent and interchangeable physical roles. This be-
comes more transparent by transcribing (the slightly
asymmetrical) Eq. (6) with the aid of the Poisson brackets
[2] into the fully symmetric form:

h0 � �h;H�P; p0 � �p;H�P : �11a; b�
Once recognized, this equivalence can also be proven di-
rectly. It originates namely from the simple fact that (for
constant thermophysical properties) both the ®elds #�x; t�
and q�x; t� satisfy, as an immediate consequence of (1), the
same Fourier-type equations:

o#
ot
� a

o2#

ox2
and

oq

ot
� a

o2q

ox2
�12a; b�

respectively, where a � k=qc denotes the thermal diffusivity
of the slab. This is in full agreement with the existence of a
canonical transformation able to convert in any Hamilto-
nian system the ``old'' momenta in the ``new'' coordinates
and the ``old'' coordinates in the ``new'' momenta, respec-
tively, [2]. The difference between temperature and heat ¯ux
is thus (for constant thermophysical properties) practically
one of nomenclature only, in agreement with (11). The
symmetric character of the two ®elds #�x; t� and q�x; t� as
independent dynamical variables on equal footing with re-
spect to their evolution-equations (12) is also preserved by
the boundary conditions (2). Indeed, by taking into account
(1) and (4), the conditions (2), as linear relationships be-
tween the boundary values of # and o#=ox may immediately
be transcribed in similar linear relationships between the
corresponding boundary values of q and oq=ox:
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kX2q�0; t� � a1
oq

ox
�0; t� � 0

kX2q�d; t� ÿ a2
oq

ox
�d; t� � 0

�13a; b�

or, equivalently

kX2p�0� � a1p0�0� � 0

kX2p�d� ÿ a2p0�d� � 0 :
�130a; b�

Therefore, the heat conduction problem considered can be
described in a ``#-picture'' as well as in a ``q-picture'' in a
completely equivalent manner. This equivalence results
often in some practical advantages. Thus, by comparing
(2) to (13) one immediately sees that a Neumann-problem
for the ®rst equation (12), reduces to a (usually more fa-
miliar) Dirichlet-problem for the second one (i.e., ac-
cording to the nomenclature of [6]: Eq. (12a) with
homogeneous boundary conditions of the second kind, is
equivalent to Eq. (12b) with homogeneous boundary
conditions of the ®rst kind). Some differences of ``tech-
nical'' nature between the two pictures mentioned, re-
sulting from the presence of X in Eqs. (130), will be
discussed in the next section.

Let us now discuss the mechanical meaning of the
boundary conditions (2) shortly. For the canonical con-
jugate variables h and p they become:

p�0� � a1h�0� and p�d� � ÿa2h�d� : �14a; b�
These equations show that the boundary conditions of the
heat conduction problem are converted in the framework
of the Hamiltonian approach in simple proportionality
requirements for the coordinates and momenta in the
initial �x � 0� and the ®nal �x � d� instant of the me-
chanical motion, the coef®cients of proportionality being
precisely the heat transfer coef®cients a1 and a2 at the
front- and the backside of the slab, respectively. With
given initial data h�0� and p�0�, condition (14a) deter-
mines the solution of the mechanical problem unequivo-
cally for any value of the continuous parameter X.
Condition (14b) requires then additionally that the tra-
jectory of motion started in the point fh�0�; p�0�g of the
phase-space, arrives in the ®nal instant of motion �x � d�
in a certain point fh�d�; p�d�g ®xed a priori. As we shall
show in the next section, the effect of this additional
``arrival requirement'' is a severe restriction on the allowed
frequencies X of the abstract harmonic oscillator. As ex-
pected, the sequence of these frequencies of the Hamilto-
nian problem turns out to be equivalent to the eigenvalues
encountered in the traditional approaches [3±7] of the heat
conduction problems. The ``initial position'' h�0� of the
oscillator is then determined by the ``true'' initial condi-
tion (3) of the heat conduction problem, which in turn
requires (except for certain very special cases) to represent
#�x; t� as a linear superposition of all the allowed states of
the oscillator, with amplitudes attenuated in time accord-
ing to Eqs. (4).

We close this section by writing down, as a direct out-
¯ow of the transfer-invariant (9) and the boundary con-
ditions (14), two useful relationships connecting the
possible values of h and p at the two boundaries of the slab:

h�d� � �
��������������������
a2

1 � k2X2

a2
2 � k2X2

s
� h�0�;

p�d� � � a2

a1

��������������������
a2

1 � k2X2

a2
2 � k2X2

s
� p�0� :

�15a; b�

The transfer-invariant (9) yields therefore direct physical
information about the con®guration change of the the-
rmophysical ®eld f#�x; t�; q�x; t�g, without detailed
knowledge of the explicit solution of the problem.

3
Solution by the "propagator-method"
This section is devoted to the ``propagator approach'', a
formal method for solving the Hamiltonian Eqs. (5) with
interesting physical spin-offs, especially concerning the
heat conduction problem in composite media. To this
end we ®rst transcribe the system (5) into the compact
2� 2-matrix form:

/0�x� � H � /�x� �16�
where the column matrix /�x� as state vector of the ®eld
con®guration and the quadratic matrix H as Hamiltonian
matrix of the system are de®ned as:

/�x� � h�x�
p�x�

� �
and H � 0 1

k
ÿkX2 0

� �
�17a; b�

respectively. The matrix-differential equation (16) can now
be considered formally as a ``usual'' ordinary differential
equation of the ®rst order, whose (formal) solution is
immediate:

/�x� � eHx � /�0� � P�x; 0� � /�0� �18�
where for the exponential-matrix eHx the shortcut nota-
tion P�x; 0� was introduced.

Now, by expanding the exponential-matrix eHx in a
Taylor series of its exponent-matrix Hx and by taking into
account the property

Hn � �ÿ1�n2Xn � 1 for n � 2; 4; 6; . . .

�ÿ1�nÿ1
2 Xnÿ1 �H for n � 1; 3; 5; . . .

(
�19�

of the Hamiltonian matrix (17), we obtain after some
algebra:

P�x; 0� � 1 � cosXx�H � sinXx

X
�20�

which, written out explicitly reads as:

P�x; 0� � cosXx
sinXx

kXÿkX sinXx cosXx

 !
�21�

(the symbol 1 denotes above the 2� 2 unity-matrix).
The physical meaning of the matrix P results by in-

spection of Eq. (18) at the ®rst glance: It ``transfers'' or
``propagates'' the mechanical state of the hypothetical os-
cillator from the starting moment of motion x � 0 into a
later state at an instant x � d. On this ground, P�x; 0� will
be referred to as transfer matrix or propagator of the
system. This ``transfer'' corresponds in the heat conduc-
tion problem to a mapping of the thermophysical ®eld
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f#�x; t�; q�x; t�g for a ®xed instant of the real time t from
its con®guration fh�0�; p�0�g at the boundary x � 0 into
the con®guration fh�x�; p�x�g at a distance x � d within
the slab. The transfer matrix P�x; 0� is thus equivalent
to the ®nite canonical transformation mentioned in the
precedent section, which yields the explicit solution of the
problem. Indeed, the latter results from (18) immediately,
by taking into account (21) and (14a), as:

h�x� � cos Xx� a1

kX
sin Xx

8: 9;h�0�

p�x� � ÿ kX sin Xxÿ a1

kX
cos Xx

8: 9;h�0� :
�22a,b�

Let us now examine the crucial effect of the boundary
condition (14b) on this unique solution of the ``initial
value'' problem speci®ed by Eq. (14a) where X, which
depends according to (5) on the separation constant s, is
still considered as a continuous free-parameter of the
problem. To this end we substitute in (22) x � d, divide
the resulting equations side by side to each other and re-
call Eq. (14b). Thus, we obtain as an additional effect of the
second boundary condition (14) to the ®rst one the fol-
lowing restriction, or selection rule for the allowed fre-
quencies of our oscillator:

tan Xd � �a1 � a2�Xk

�Xk�2 ÿ a1a2

� �Bi1 � Bi2�Xd

�Xd�2 ÿ Bi1Bi2

�23�

Here, Bi1;2 denote the Biot numbers de®ned as
Bi1;2 � a1;2d=k; �6�:

In (23) we now recover the well known transcendental
equation which determines the in®nite sequence of the
eigenvalues X � Xn; n � 1; 2; 3; . . . ; encountered in the
traditional approaches of the heat conduction problems,
[3±7]. Therefore, these eigenvalues (which all are non-
degenerate, i.e. distinct) represent precisely the allowed
frequencies i.e. the eigenfrequencies of the abstract har-
monic oscillator of the Hamiltonian description. Ac-
cording to equation (5c), the eigenfrequencies also
determine the exponential relaxation times sn � 1=aX2

n of
the ®eld con®gurations fhn�x�; pn�x�g. The symmetric
roles played by the temperature and ¯ux components hn

and pn become manifest again. Indeed, the x-derivative of
Eq. (16) and the properties (19) of the Hamiltonian ma-
trix yield:

/00n�x� � H � /0n�x� � H2/n�x� � ÿ1 � X2
n/n�x� :

�24�
This is however the concise form of equations h00n � ÿX2

nhn

and p00n � ÿX2
npn which are nothing than Eqs. (12), after

the variables x and t have been separated.
Let us now discuss shortly the mechanical meaning of

the ``true'' initial condition (3). One immediately sees that
if there accidentally happens that the initial temperature
pro®le g�x� coincides with one of the eigenstates of the
oscillator, i.e.

g�x� � cos Xnx� a1

kXn
sin Xnx

8>: 9>;hn�0� �25�

then, and only then, the unique solution of the heat con-
duction problem is simply:

#�x; t� �hn�x�e t
sn � g�x�eÿaX2

nt

q�x; t� � ÿ pn�x�e t
sn � ÿk � g0�x�eÿaX2

nt :
�26a, b�

If, however the initial temperature pro®le g�x� is not an
eigenstate of the oscillator, condition (3) can only be sat-
is®ed by a linear superposition of the form:

#�x; t� �
X1
n�1

hn�x�eÿ t
sn

�
X1
n�1

hn�0� � cos Xnx� Bi1

Xnd
sin Xnx

8>: 9>;eÿaX2
nt

�27�
The coef®cients hn�0� can now be determined by sub-
jecting (27) to the initial condition (3) and by taking into
account the orthogonality of the functions hn�x�. In this
way we recover in the propagator approach the well known
results [3±7]:

hn�x� � cos Xnx� Bi1

Xnd
sin Xnx

8>: 9>; � hn�0�

pn�x� � ÿ kXn sin Xxÿ Bi1

Xnd
cos Xnx

8>: 9>; � hn�0�
�28a, b�Z d

0

hn�x�hm�x�dx � Nndnm �29�

hn�0� � 1

Nn

Z d

0

g�x� cos Xnx� Bi1

Xnd
sin Xnx

8>: 9>;dx

�30�

Nn � 1� Bi2
1

X2
nd2

8>>>: 9>>>;
� 1� Bi1

Bi2
1 � X2

nd2
� Bi2

Bi2
2 � X2

nd2

8>>>: 9>>>; d

2
: �31�

Obviously, all the remaining Eq. (5)±(21) of the present
paper are valid in this general case for every eigenstate of
the oscillator separately. In other words, every eigenstate
of the oscillator is characterized by its own Hamiltonian
(7), con®guration-invariant (10), Hamiltonian matrix
(17b), propagator (21) and satis®es the conditions (14)
individually. Therefore, we may interpret the general so-
lution (27) as a linear superposition of the independent
eigenstates of an abstract harmonic oscillator with eigen-
frequencies Xn, spring constants kn � kX2

n and initial
positions hn�0� given by Eq. (30). We underline that the
initial positions hn�0� of the mechanical oscillator are
prescribed here not somehow but are determined in a self-
consistent way as the projections (Fourier coef®cients) of
the initial temperature distribution #�x; 0� � g�x� on the
eigenstates hn�x� of the oscillator itself. Finally, it is
worthwhile to spend some attention to the problem of
orthogonality of the components hn�x� and pn�x� of the
con®guration-eigenstates /n�x�. By contrast to the tem-
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perature components whose well known orthogonality is
given by (29), the ¯ux components pn as given by (28b) are
neither orthogonal to each other, nor to the temperature
components hn. The reason for this lack of orthogonality
resides in the Xn-dependence of the boundary conditions
(130), as mentioned in Section 2. There seems also that the
``#- and q-pictures'', in spite of the symmetry of their
evolution equations (12) and boundary conditions (2) and
(13) are not equally adequate to the description of the heat
conduction problems. This is however not the case. We are
faced here not with a basic but with a ``technical'' problem
only. As it is well known from linear algebra, by choosing
certain linear combinations of the linearly independent
``vectors'' pn�x� given in (28b), one always can construct a
new orthogonal q-base, by following the classical orthog-
onalization procedure of Schmidt, [8].

4
Geometrical interpretation and discussion
As argued in Section 2, the Hamiltonian (9) of the
mechanical motion associated with the heat conduction
remains unchanged as the position coordinate runs
across the slab. This means geometrically that in the
two-dimensional phase-space fh; pg the representative
point Mn � fhn�x�; pn�x�g of the nth eigenstate of
the mechanical oscillator moves on an ellipse
h2

n=a2
n � p2

n=b2
n � 1 with semiaxes janj � 2In=kX

2
n

ÿ �1=2

and jbnj � 2kIn� �1=2. According to (28a, b), the semiaxes
are obtained as the absolute values of

an �
���������������������������
1� Bi1

Xnd

8>: 9>;2
s

� hn�0�

and

bn � a1 �
���������������������������
1� Xnd

Bi1

8>: 9>;2
s

� hn�0� �32�

respectively. Here, the eigenfrequencies Xn are the (posi-
tive) roots X1 < X2 < X3 < � � � of the transcendental Eq.
(23) and the initial position of the oscillator hn�0� in the
nth eigenstate is given by Eq. (30) and (31). The semiaxes
of the elliptic trajectories are connected to the eigenfre-
quencies by the simple relationship

Xn � 1

k
jbnj
janj �33�

The number of cycles Cn described by Mn on the ellipse as
x runs from 0 to d, is given by the ratio of the slab
thickness d and the period Tn � 2p=Xn of motion, i.e.

Cn � Xnd

2p
� d

2pk
jbnj
janj �34�

Thus, the Fourier series of the temperature and ¯ux ®elds
may be put in the form

#�x; t� �
X1
n�1

hn�x� � eÿaX2
nt

�
X1
n�1

an � eÿaX2
nt � cos Xnxÿ arctan

Bi1

Xnd

8>: 9>;
�35�

q�x; t� � ÿ
X1
n�1

pn�x� � eÿaX2
nt

�
X1
n�1

bn � eÿaX2
nt � sin Xnxÿ arctan

Bi1

Xnd

8>: 9>;
�36�

These equations show that (a) the amplitude spectrum
fjanjg and fjbnjg of the temperature #�x; t� and the ¯ux
®eld q�x; t� coincides with the sequence of the semiaxes
janj and jbnj of the elliptic phase-space trajectories of the
oscillator in its eigenstates, respectively, (b) the contri-
butions of the individual eigenstates of the oscillator to the
thermophysical ®eld f#; qg do relaxe in the real time t
exponentially, and (c) the relaxation rates depend to the
eigenfrequencies of the mechanical oscillator according to
sn � 1=aX2

n:
As an illustration, in Fig. 1 the semiaxes janj and jbnj

corresponding to the ®rst four eigenstates of the oscillator
are shown as obtained for a constant initial temperature
distribution of g�x� � const. � 1 K (above the tempera-
ture of the ambient) and the parameter values d � 0:1 m,
k � 0:1 W �mÿ1 � Kÿ1, a1 � 1 W �mÿ2 � Kÿ1 and
a2 � 0:01 W �mÿ2 � Kÿ1: The corresponding eigenfre-
quencies obtained by numerical solving of Eq. (23) are
X1 � 8:68 mÿ1, X2 � 34:28 mÿ1, X3 � 64:39 mÿ1 and
X4 � 95:30 mÿ1, respectively.

The geometrical meaning of the boundary conditions
(14) may now be described as follows. Taking into account
that the starting condition (14a) does not specify both the
initial data h�0� and p�0� but their ratio a1 only, it is only

Fig. 1. The semiaxes a1 � 1:116; a2 � 0:15; a3 � 0:047; and
a4 � 0:021 (left bars) and b1 � 0:968; b2 � 0:513; b3 � 0:303; and
b4 � 0:204 (right bars) of the elliptic phase-space trajectories of
the oscillator in its ®rst four eigenstates, representing the ®rst
four lines of the amplitude spectrum of the temperature #�x; t�
and ¯ux ®eld q�x; t�, respectively (parameter values as given in
the text)
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able to specify the laws of motion (22) up to the arbitrary
initial position h�0� of the oscillator. It also leaves the
continuous frequency spectrum X of the oscillator (de-
pending on the separation constant s) entirely free. The
amplitude-freedom of the oscillator is then removed by the
``true'' initial condition (3) which supplies for hn�0� the
explicit formula (30) in a self consistent way, as explained
in Section 3. The frequency-freedom on the other hand, is
lifted by the ``arrival condition'' (14b) which acts similarly
to a quantization rule, namely it selects out from the
continuous frequency spectrum of the initial-value prob-
lem an in®nite but denumerable set of discrete values, the
eigenfrequencies Xn of the oscillator, given by the positive
roots of Eq. (23). Therefore, the two-point boundary
conditions (14) play for the abstract mechanical motion
the role of the ``two-instant'' conditions which hold for
every eigenstate of the oscillator separately, i.e.:

pn�0� � a1hn�0� and pn�d� � ÿa2hn�d�: �37a, b�
This means geometrically that in the phase-plane fh; pg all
the starting points fhn�0�; pn�0�g and all the arrival points
fhn�d�; pn�d�g of the elliptic trajectories corresponding to
the eigenstates of the oscillator (i.e. to the Fourier com-
ponents of the thermophysical ®eld at the boundaries of
the slab) lie on the same straight lines p � a1h and
p � ÿa2h, respectively. The slopes of these straight lines
(both of them passing through the origin) are precisely the
heat transfer coef®cients a1 and ÿa2, respectively. This
circumstance may be immediately seen in Fig. 2 which
shows the ellipses corresponding to the amplitude spectra
of Fig. 1, i.e. to the ®rst four Fourier components
fhn�d�; pn�d�g of the thermophysical ®eld.

We close this Section by writing down some special
solutions of the eigenvalue Eq. (23). It is a widely spread
opinion that (for ®nite values of both a1 and a2) this

transcendental equation is only tractable by numerical
methods. This statement actually holds, except for a great
number of (physically interesting) special values of d for
which one of the eigenvalues Xn always can be calculated
in an exact algebraic form. Perhaps, the most exotic one of
these special cases is obtained if the slab thickness coin-
cides with one of the values dn of the in®nite sequence

dn � �2nÿ 1�p
2

k���������
a1a2
p ; n � 1; 2; 3; . . . �38�

It is easy to prove that is this case

X� �
���������
a1a2
p

k
�39�

represents precisely the nth positive root of Eq. (23).
Thus, to n � 1 there corresponds the slab thickness
d1 � �p=2�k�a1 � a2�ÿ1=2 and (39) yields the most persis-
tent eigenvalue of the spectrum, the ground-state fre-
quency X1. For n � 2; 3; . . . the frequency X� shifts to
the second, third etc. place of the sequence
X1 < X2 < X3 < � � �. If one considers e.g. a slab of con-
crete with k � 1:8 W �mÿ1 � Kÿ1, a � 6:8 � 10ÿ7 m2 sÿ1 and
the standard indoor and outdoor heat transfer coef®cients
a1 � 10 W �mÿ1 � Kÿ1 and a2 � 20W �mÿ1 � Kÿ1, one ob-
tains for n � 1 a usual thickness of d1 � 0:2 m, the fre-
quency of X1 � 7:86 mÿ1 and a relaxation time of the
ground state of s1 � 6:62 h, respectively. The next eigen-
frequencies of the spectrum (calculated numerically) are
X2 � 19:66 mÿ1, X3 � 33:83 mÿ1, and X4 � 48:83 mÿ1,
respectively. It is also worthwhile to notice that for the slab
thickness' (38), the number of cycles (34) described by the
representative point of the mechanical oscillator along
the ellipse is

Cn � X�dn

2p
� 2nÿ 1

4
�40�

This means physically that the nth positive root of Eq. (23)
is then and only then given by the exact formula (39),
when the slab thickness d � dn amounts exactly 2nÿ 1
quarter-periods of the corresponding mechanical oscilla-
tion. From mathematical point of view, the exotic char-
acter of the solution (38) and (39) consists in the fact that
it coincides with each a singular point of the left and the
right hand side of (23), respectively. Due to this fact, this
solution can not be found by numerical procedures ap-
plied to the form (23) of the eigenvalue equation directly.
If however the numerical approach is applied instead to
the reciprocal equation of (23), i.e. to cot Xnd � 1=r.h.s,
the singularities mentioned go over into zeros of the new
equation and the existence of the special solution (38) and
(39) becomes immediately manifest. It can then be iden-
ti®ed also by numerical calculations easily.

5
Summary and conclusions
The main results of this paper may be summarized as
follows.

1. The heat conduction problem in a homogeneous slab
0 � x � d with the most general linear and homogeneous
boundary conditions can be put (for a ®xed time t) in a
one-to-one correspondence with the Hamiltonian motion

Fig. 2. As x varies from 0 to d the representative points
Mn � fhn�x�; pn�x�g of the ®rst four eigenstates of the thermo-
physical ®eld (for parameter values as in Fig. 1) describe (by
moving clockwise) elliptic trajectories which all issue from the
same starting line (small dots) of slope arctan�a1� � 45� and stop
after a number of cycles Cn at the same ®nishing line (big dots) of
slope arctan�ÿa2� � ÿ0:57�. The biggest ellipse corresponds to
the ground state of frequency X1. The other ones become with
increasing eigenfrequency Xn of the mechanical oscillator smaller
and smaller. The number of cycles described by the points Mn on
the corresponding ellipses are C1 � 0:14;C2 � 0:54;C3 � 1:02
and C4 � 1:52, respectively
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of an abstract harmonic oscillator in the ``time-interval''
x 2 �0; d�. The two-point boundary value problem of heat
conduction speci®ed according to (2) by the temperature
and the heat ¯ux at the front �x � 0�- and the backside
�x � d� of the slab, corresponds in this way to a me-
chanical ``two-instant-problem'', speci®ed by the ``start-
ing''- and the ``arrival''-conditions (14a,b) with respect to
the coordinate and the momentum of the oscillator at the
initial �x � 0� and ®nal �x � d� ``instant" of motion,
respectively.

2. The laws of motion for the position coordinate and
the momentum of the oscillator in its eigenstates corres-
pond to the individual terms of the Fourier series (35) and
(36) of the temperature #�x; t� and of the ¯ux ®eld q�x; t�,
respectively. The contributions of the individual eigen-
states to these ®elds are not equally important. They are
weighted by the eigenfrequencies of the oscillator through
the ``relaxation factor'' exp�ÿaX2

nt�, so that after a long
time (i.e. for t � sn � 1=aX2

n) only the ground state of the
oscillator (i.e. the state corresponding to the lowest ei-
genvalue X1) survives. This means geometrically that with
time the ellipses of Fig. 2 e.g. start to disappear succes-
sively. Those corresponding to big frequencies ``die out''
®rst, being followed by the low-frequency ones, until the
steady state corresponding to the ambient temperature is
reached. For some special (and for the practice signi®cant)
values of the slab thickness, the ground-state frequency
can be calculated in the exact algebraic form (39).

3. The Hamiltonian approach reveals the existence of a
con®guration- or transfer-invariant of the thermophysical
®eld f#; qg. This is a quadratic form of the space-depen-
dent parts of the temperature and ¯ux ®elds whose value
remains invariant as x changes from 0 to d within the slab.
The transfer-invariant yields in this way explicit relation-
ships connecting the ®eld con®gurations for two different
values of x (in particular at the two boundaries), without
any detailed knowledge about the solution of the heat
conduction problem.

4. As an immanent feature of any Hamiltonian system
results that the space-dependent part of the temperature
and the ¯ux ®eld as generalized coordinate and conjugate
momentum, respectively play in the heat conduction to-
tally equivalent and interchangeable roles. There always
exists a canonical transformation which maps these dy-
namical variables on each other. The difference between
temperature and heat ¯ux is thus (in a homegeneous slab
with constant thermophysical properties) practically one
of nomenclature only.

5. The transfer-matrix or propagator makes it possible
to map the thermophysical ®eld f#; qg for any ®xed time t
from its con®guration at the boundary x � 0 on its con-
®guration at any x � d by a simple matrix-multiplication,
which leads at the same time to the explicit solution of the
heat conduction problem. This con®guration-transfer
from x � 0 to x � d takes place in such a way that the
Hamiltonian (9) remains unchanged.

6. The propagator method can be extended to the case
of a composite slab directly. The transfer matrix of the
latter is obtained simply by multiplying the transfer ma-
trices of type (21) corresponding to the individual layers of
the composite, respectively.
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