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Abstract
In this paper, new unfitted mixed finite elements are presented for elliptic interface prob-
lems with jump coefficients. Our model is based on a fictitious domain formulation with
distributed Lagrange multiplier. The relevance of our investigations is better seen when
applied to the framework of fluid structure interaction problems. Two finite elements
schemes with piecewise constant Lagrange multiplier are proposed and their stability is
proved theoretically. Numerical results compare the performance of those elements, con-
firming the theoretical proofs and verifying that the schemes converge with optimal rate.
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1 Introduction

Elliptic interface problems with jump coefficients are important and widely used in appli-
cations including bio-science and fluid-dynamics applications.

We consider a problem where the coefficients in the governing partial differential
equation may jump across the interface that separate two or more sub-domains. There are
various possibilities for the decomposition of the domain. In this paper, we consider the
case where one subdomain is immersed into another one. Other cases might be considered
as well [13] and limiting to two subdomains doesn’t affect the generality of our discussion.

To deal with interface problems, one could use fitted meshes matching at the interface
as in Figure 1.A. Many existing methods are developed based on this approach such as
extended finite element method [10], immersed interface method [15], multi scale finite
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element method [14], and many others [8, 12]. Yet, this method is challenging especially
for time-dependent problems such as Fluid Structure Interaction (FSI) problems. In such
problems, the mesh follows the evolution of the system which requires explicit tracking of
the interface. Therefore, with large displacements and deformations, the mesh can become
ill-shaped mostly around the interface. One could overcome this issue by updating the
mesh at every time step which makes this approach computationally expensive and hard
to use.

A: Fitted boundaries B: Unfitted boundaries

FIGURE 1: Fitted vs. unfitted boundaries

An alternative approach is to use unfitted meshes. In this approach, the meshes are
independent of the interface which is allowed to cut through the interior of elements,
see Figure 1.B. In this paper, we adapt the unfitted approach to introduce the Fictitious
Domain with Distributed Lagrange Multiplier method (FD-DLM). This method is based
on the Immersed Boundary Method (IBM) that was introduced by Peskin in [18] for the
simulation of the blood flow in the heart in the early seventies where he approximated the
solution numerically using finite differences. Later in 2003 and for the first time, the IBM
was established in the framework of finite element in [4].

This reasearch led to the Fictitious Domain with Distributed Lagrange Multiplier (FD-
DLM) method which has the advantage of avoiding mesh regenerations by using fixed
meshes. It makes use of the so-called fictitious domain approach that was introduced
in [11, 19], to fictitiously extend one mesh into the other one. Then, the two meshes are
considered independent of each other and constructed only once. To this end, we add
a coupling term to enforce that the solution in the extended domain coincides with the
solution in the immersed domain. In our model, a Lagrange multiplier term is responsible
for that.

A crucial aspect in this method is how to deal with the coupling term. Such term is
represented by a bilinear form defined on suitable Hilbert spaces. For instance, in [1], the
discretization of this term was represented as the scalar product of L2. In [6] the coupling
term was represented as the scalar product either in L2 or H1. Furthermore, the compu-
tation of the this term involves the evaluation of the integral on the immersed domain of
shape functions that are supported on two different meshes. In [3] it is discussed how to
implement this term in practice. It is shown that, in order to achieve optimal convergence
rate of the method, one has to perform the integral exactly by examining the intersection
of the two meshes. Moreover, it is observed that finding the geometric intersection cannot
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be avoided even if the precision of the used quadrature rule is increased. Hence, in our
numerical tests we will follow the intersection approach. More details on the coupling
terms are given in Section 4.

In [1] continuous piecewise linear finite element spaces are considered for the dis-
cretization of the problem on triangular meshes. In [6] continuous piecewise bilinear
finite element spaces are considered on quadrilateral meshes. Recently, [5] showed, in
the framework of FSI, the stability of a linearization of the continuous problem and intro-
duced a unified setting for the choice of the finite element spaces. This setting allows for
more general choices of spaces. However, so far only continuous finite element spaces
are considered for the multiplier responsible of the coupling term.

Our work is an extension to those papers where we are interested in finding stable
elements with more flexibility in the choice of the multiplier. In particular, we addressed
for the first time the question whether piecewise discontinuous elements can be used for
the approximation of the Lagrange multiplier. The motivation of our choice originates
from FSI problems, where having a discontinuous Lagrange multiplier could improve the
local mass conservation properties.

In Section 2.1 we introduce in detail the problem in the continuous setting. This
problem is well-posed; we then consider its discretization and propose possible choices
of elements that are the main object of our study in Section 2.2. Next, we prove the well-
posedness of our discrete schemes in Section 3. The stability of our schemes is based
on the presence of interior degrees of freedom (so called bubble functions) in the space
approximating the solution where the Lagrange multiplier is distributed. We are showing
numerically in Section 4.1 that the presence of the bubble functions is necessary for the
discrete inf-sup condition. Section 4.2 reports a series of numerical tests which confirm
the theoretical results.

2 Formulation of the method

2.1 Model problem

Let Ω be a domain in Rd, d = 1, 2, 3 with a bounded Lipschitz boundary ∂Ω. We assume
that Ω is subdivided into two subdomains Ωi, i = 1, 2 so that Ω = Ω1 ∪ Ω2. The subdo-
mains are separated by a Lipschitz continuous interface Γ = Ω1∩Ω2. In order to simplify
the presentation we assume that Ω2 is immersed in Ω so that Γ∩∂Ω = ∅. Figure 2 reports
a sketch of the situation in 2D. Then, we consider the following problem:

Problem 2.1. Given f1 : Ω1 → R, f2 : Ω2 → R, find u1 : Ω1 → R and u2 : Ω2 → R
such that:

−∇ · (βi∇ui) = fi in Ωi, i = 1, 2 (1a)
u1 = u2 on Γ (1b)

β1∇(u1) · n1 = −β2∇(u2) · n2 on Γ (1c)
u1 = 0 on ∂Ω1 (1d)

where ni, i = 1, 2 is the unit vector pointing out of Ωi and normal to Γ.
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This is an elliptic interface problem with jump in the coefficients and homogeneous
Dirichlet boundary condition. We assume that the coefficients βi belong to L∞(Ωi) (i =

1, 2) and that they are bounded by below as follows:

β1 > β
1
> 0 (2)

β2 > β
2
> 0. (3)

In 2D, this model typically describes the displacement of a membrane made of two mate-
rials. The coefficients βi stand for the stiffness of the materials, fi i = 1, 2 for the loads
applied to the membrane, and ui for the vertical displacement in Ωi (i = 1, 2), respec-
tively. Equation (1b) guarantees the continuity of the solutions u1 and u2 on the interface
Γ. This means that we are considering connected materials that do not break. Moreover,
Equation (1c) prescribes a jump of the normal derivatives of u1 and u2 at the interface
that is inversely proportional to the ratio of the coefficients.

= +

FIGURE 2: Domain decomposition in 2D.

= +

FIGURE 3: Ω1 fictitiously extended in Ω2 in 2D.

In this paper, we consider a fictitious domain approach, therefore we reformulate
Problem 2.1 following [1] and [6]. More precisely, we extend u1, β1, and f1 to Ω and
denote such extensions by u, β, and f , respectively, so that u|Ω1

= u1, f |Ω1
= f1, and

β|Ω1
= β1. Moreover, we enforce the extended solution u to coincide with u2 in Ω2, i.e.

u|Ω2 = u2 by introducing a Lagrange multiplier. The resulting formulation will be called
FD-DLM.

In view of the introduction of the variational formulation of the problem, we recall
some notation. For any open connected domain, or part of a domain, ω ⊂ Rd for d = 2, 3,
we denote the standard Lebesgue and Sobolev spaces by L2(ω) and H1(ω), respectively.
Those spaces are endowed with their norms; ‖·‖L2(ω) = ‖·‖0,ω and ‖·‖H1(ω) = ‖·‖1,ω .
Moreover, (·, ·)ω stands for the scalar product in L2(ω).
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Let us consider the spaces

V = H1
0 (Ω) =

{
v ∈ H1(Ω)| v = 0 on ∂Ω

}
V2 = H1(Ω2)

endowed with their natural norms ‖v‖V = |v|1,Ω = ‖∇v‖0,Ω and ‖v2‖V2
= ‖v2‖1,Ω2

,
respectively.

We denote by Λ the dual space of V2, i.e. Λ =
[
H1(Ω2)

]∗
, endowed with the follow-

ing dual norm:

‖µ‖Λ = sup
v2∈V2

〈µ, v2〉
‖v2‖V2

where 〈·, ·〉 is the duality paring between V2 and its dual space Λ.
In [1] it has been proved that Problem 2.1 is equivalent to the following fictitious

domain formulation with distributed Lagrange multiplier.

Problem 2.2. Given f ∈ L2(Ω), f2 ∈ L2(Ω2), β ∈ L∞(Ω) and β2 ∈ L∞(Ω2) with
f |Ω1 = f1 and β|Ω1 = β1, find (u, u2, λ) ∈ V × V2 × Λ such that

(β∇u,∇v)Ω + 〈λ, v|Ω2〉 = (f, v)Ω ∀v ∈ V
((β2 − β)∇u2,∇v2)Ω2 − 〈λ, v2〉 = (f2 − f, v2)Ω2 ∀v2 ∈ V2

〈µ, u|Ω2 − u2〉 = 0 ∀µ ∈ Λ.

After some standard calculations, one can obtain the following characterization of λ,
that will be useful to estimate the approximation error, see [1]:

〈λ, v2〉 = −
∫

Ω2

(
β

β2
f2 − f

)
v2 dx+

∫
Γ

(β2 − β)∇u2 · n2 v2 dγ. (4)

Clearly, Problem 2.2 is a saddle point problem which can be written in operator form as
follow: A1 0 CT1

0 A2 −CT2
C1 −C2 0


 u

u2

λ

 =

F1

F2

0

 , (5)

where A1 and A2 are the operators associated with the bilinear forms (β∇u,∇v)Ω and
((β2 − β)∇u2,∇v2)Ω2

, respectively. Moreover, (C1, −C2) is the operator pair that is
associated with the bilinear form 〈µ, u|Ω2 − u2〉 with kernel:

K = {(u, u2) ∈ V × V2 : 〈µ, u|Ω2 − u2〉 = 0,∀µ ∈ Λ} .

Notice that due to the definition of Λ we have that u|Ω2
= u2 for all (u, u2) ∈ K.

Typically, in order to prove the well-posedness of a continuous saddle point problem
like Problem 2.2, one needs to verify the following two sufficient conditions (see [2]).

• Continuous elker condition: There exists a constant γ1 > 0 such that for all
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(v, v2) in K the following inequality holds true

(β ∇v,∇v)Ω + ((β2 − β) ∇v2,∇v2)Ω2
≥ γ1

(
‖v‖2V + ‖v2‖2V2

)
.

• Continuous inf-sup condition: There exists a constant γ2 > 0, such that for all
µ ∈ Λ the following bound holds true

sup
(v,v2)∈V×V2

〈µ, v|Ω2 − v2〉(
‖v‖2V + ‖v2‖2V2

) 1
2

≥ γ2 ‖µ‖Λ .

Both conditions were shown to hold in [1]. Therefore, a unique stable solution exists for
Problem 2.2 and we can state the following proposition (see [2]).

Proposition 2.1 (Stability). Given f ∈ L2(Ω) and f2 ∈ L2(Ω2), there exists a unique
solution (u, u2, λ) in V × V2 × Λ for Problem 2.2 which satisfies the following a priori
estimate:

‖u‖V + ‖u2‖V2
+ ‖λ‖Λ ≤ C

(
‖f‖0,Ω + ‖f2‖0,Ω2

)
.

Remark 1. It is known that the regularity of the solution (u1, u2) of an elliptic interface
problem with discontinuous coefficients and a Lipschitz interface Γ, such as Problem 2.1,
is limited by the presence of re-entrant corners of the interface and of the external bound-
ary. Hence we have that there exists s with 3

2 < s ≤ 2 such that ui ∈ Hs(Ωi) for i = 1, 2,
(see [17]). Moreover, since the solution u ∈ H1

0 (Ω) of Problem 2.2 exhibits jumps in the
derivative normal to the interface, it belongs to Hr(Ω), with 1 < r < 3

2 .

2.2 Finite element discretization

Let T and T2 be two shape-regular meshes of the fictitiously extended domain Ω and
the immersed domain Ω2, respectively. Here, we are considering quadrilateral meshes in
2D and hexahedral in 3D, with h and h2 denoting the maximum mesh size of T and T2,
respectively. We introduce the finite element spaces Vh ⊂ V , V2h ⊂ V2, and Λh ⊂ Λ. Vh
and V2h contain piecewise polynomials continuous across the interelement boundaries,
while for Λh we choose discontinuous finite elements. However, since Λh ⊂ L2(Ω2), the
duality paring in Problem 2.2 can be evaluated using the L2 scalar product in Ω2. Then,
the discrete version of Problem 2.2 reads:

Problem 2.3. Given f ∈ L2(Ω) and f2 ∈ L2(Ω2), find (uh, u2h, λh) ∈ Vh×V2h×Λh
such that

(β∇uh,∇vh)Ω + (λh, vh|Ω2
)Ω2

= (f, vh)Ω ∀vh ∈ Vh
((β2 − β)∇u2h,∇v2h)Ω2

− (λh, v2h)Ω2
= (f2 − f, v2h)Ω2

∀v2h ∈ V2h

(µh, uh|Ω2
− u2h)Ω2

= 0 ∀µh ∈ Λh.

For K an element of T or T2, we define Qk(K), k ≥ 1, to be the space of finite
elements that are polynomials of degree at most k, separately in each variable on K. If
k = 0 then Q0(K) is the space of constant polynomials and will be denoted by P0(K).
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Moreover, let B(K) ∈ Q2(K) be a bubble function defined on K and vanishing at the
boundary of the element K. This function will be used in this work to enrich the space
Q1(K).

In the following we are going to discretize the Lagrange multiplier by piecewise con-
stants, hence we introduce the following natural choices for Vh × V2h × Λh.

• Element 1: Q1 − (Q1 +B)− P0

In this element we define the discrete subspaces Vh, V2h,Λh to be

Vh = {vh ∈ V : vh|K ∈ Q1(K),∀K ∈ T }
V2h = {v2h ∈ V2 : v2h|K ∈ Q1(K) +B(K),∀K ∈ T2} (6)

Λh = {µh ∈ Λ : µh|K ∈ P0(K),∀K ∈ T2} .

Hence, the solution uh is approximated by piecewise bilinear polynomials and u2h

by piecewise bilinear polynomials enriched by bubble functions, so that, five de-
grees of freedom are used per element in the space V2h (see Figure 4).

• Element 2: Q2 −Q2 − P0

Here, we define the discrete subspaces Vh, V2h,Λh to be

Vh = {vh ∈ V : vh|K ∈ Q2(K),∀K ∈ T }
V2h = {v2h ∈ V2 : v2h|K ∈ Q2(K),∀K ∈ T2} (7)

Λh = {µh ∈ Λ : µh|K ∈ P0(K),∀K ∈ T2}

where we approximate both uh, u2h by piecewise biquadratic polynomials. Hence,
we use nine nodes for each element in the spaces Vh and V2h (see Figure 5). It
is clear that comparing with Element 1, V2h uses four extra nodes at the middle
of each edge, while Vh requires five extra degrees of freedoms, so this element is
computationally more expensive than Element 1.

FIGURE 4: Element 1 in 2D , Q1 − (Q1 +B)− P0.
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FIGURE 5: Element 2 in 2D, Q2 −Q2 − P0.

3 Error estimate

In this section, we study the existence of a unique stable solution of Problem 2.3. Since
it is a discrete saddle point problem, sufficient conditions for its well-posedness are the
discrete elker and inf-sup conditions (see [2]).
Let the discrete kernel Kh associated with the bilinear form (µh, uh|Ω2

− u2h)Ω2
be de-

fined as follow:

Kh = {(uh, u2h) ∈ Vh × V2h : (µh, uh|Ω2 − u2h)Ω2 = 0,∀µh ∈ Λh}

Then, the following proposition states the discrete elker condition.

Proposition 3.1 (Discrete elker condition). Let us consider Vh, V2h,Λh defined in
(6) and (7) and assume that the coefficients satisfy β2 > β > β > 0 in Ω2, then there
exists a constant γ1 > 0 independent of the discretization parameters h, h2, such that for
all (vh, v2h) ∈ Kh the following inequality holds true.

(β∇vh,∇vh)Ω + ((β2 − β)∇v2h,∇v2h)Ω2
≥ γ1

[
‖vh‖2V + ‖v2h‖2V2

]
.

Proof. For all (vh, v2h) ∈ Kh we have:

(β∇vh,∇vh)Ω + ((β2 − β)∇v2h,∇v2h)Ω2
= β ‖∇vh‖20,Ω + (β2 − β) ‖∇v2h‖20,Ω2

≥ β ‖∇vh‖20,Ω + η0 ‖∇v2h‖20,Ω2
,

where η0 is such that β2 − β ≥ η0 > 0.
Since V = H1

0 (Ω), we can apply the Poincaré inequality ‖vh‖0,Ω ≤ CΩ‖∇vh‖0,Ω, and
we have that:

(β∇vh,∇vh)Ω ≥
β

2

(
1 +

1

C2
Ω

)
‖vh‖21,Ω .

It remains to bound by below ‖∇v2h‖0,Ω2
by means of ‖v2h‖1,Ω2

. In order to use the
Poincaré–Wirtinger inequality, we split v2h as follows

v2h = E(v2h) +

[
v2h − E(v2h)

]
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where E(v2h) ∈ R is the mean value of v2h . Then,

‖v2h‖0,Ω2
≤ ‖E(v2h)‖0,Ω2

+ ‖v2h − E(v2h)‖0,Ω2

≤ ‖E(v2h)‖0,Ω2
+ C ‖∇v2h‖0,Ω2

Now, since (vh, v2h) ∈ Kh, and Λh contains constant functions on Ω2, we have

(E(v2h), E(v2h))Ω2
= (E(v2h), v2h)Ω2

− (E(v2h), v2h − E(v2h))Ω2

= (E(v2h), vh|Ω2
)Ω2
− (E(v2h), v2h − E(v2h))Ω2

= (E(v2h), vh|Ω2
)Ω2

(8)

Then, (8) gives the bound

‖E(v2h)‖20,Ω2
≤ ‖E(v2h)‖0,Ω2

‖vh‖0,Ω2

Hence,
‖E(v2h)‖0,Ω2

≤ ‖vh‖0,Ω2

which conclude the proof.
♦

Remark 2. In a particular case and under the additional condition that h2/h
d is suf-

ficiently small, in [6] it has been shown that the discrete elker condition holds true even
if the constraint β2 > β is not verified. In that case triangular linear elements were used
for the approximation of both V2 and Λ.

In the next proposition, we prove the discrete inf-sup condition.

Proposition 3.2 (Discrete inf-sup condition). Let Vh, V2h,Λh be the spaces defined
in (6) and (7) for Element 1 and Element 2, respectively. Then there exists a positive
constant γ2 > 0 independent of the discretization parameters h, h2, such that the
following discrete inf-sup condition holds.

sup
(vh,v2h)∈Vh×V2h

(µh, vh|Ω2
− v2h)Ω2(

‖vh‖2V + ‖v2h‖2V2

) 1
2

≥ γ2 ‖µh‖Λ . (9)

Proof. We prove this proposition for Element 1. The same proof carries on for Element 2.
Since vh = 0 is a possible choice in Vh, we have that

sup
(vh,v2h)∈Vh×V2h

(µh, vh|Ω2
− v2h)Ω2(

‖vh‖2V + ‖v2h‖2V2

) 1
2

≥ sup
v2h∈V2h

(µh, v2h)Ω2

‖v2h‖V2

.

Hence, it is enough to prove the following bound:

sup
v2h∈V2h

(µh, v2h)Ω2

‖v2h‖V2

≥ γ2 ‖µh‖Λ . (10)

In order to show that (10) is satisfied, we use a Fortin trick (see [7, Prop. 5.4.2]). Due
to the fact that the continuous inf-sup condition is satisfied, the aim of this proof is to
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find a linear Fortin operator Πh : V2 → V2h that satisfies the following relations for all
v2 ∈ V2:

i) ||Πhv2||V2
≤ C||v2||V2

ii) (µh, v2)Ω2
= (µh,Πhv2)Ω2

∀µh ∈ Λh.
(11)

We introduce the following subspaces of V2h:

V2h = {v2h ∈ V2 : v2h|K ∈ Q1(K),∀K ∈ T2} ⊂ V2h

V2h = {v2h ∈ V2 : v2h|K ∈ B(K),∀K ∈ T2} ⊂ V2h

Let Πh = Π1 + Π2(I −Π1) where Π1 : V2 → V2h ⊂ V2h is the Clément’s operator, such
that for all v2 ∈ V2

∑
K∈T2

h−2
K ‖v2 −Π1v2‖20,K ≤ C ‖v2‖2V2

(12a)

∑
K∈T2

‖v2 −Π1v2‖21,K ≤ C ‖v2‖2V2
(12b)

and Π2 : V2 → V2h ⊂ V2h such that Π2(pi) = 0 for all nodes pi at vertices of the element
K ∈ T2 and ∫

K

Π2v2 =

∫
K

v2 ∀v2 ∈ V2 and K ∈ T2 (13)

Let F−1
K be the affine mapping that maps objects from the current element, K ∈ T2, to

the reference element denoted by K̂, that is the unit square in 2D and the unit cube in 3D.
Then, v̂2 = v2 ◦ FK where symbols with hat refer to quantities evaluated in the reference
domain K̂.

Let |K| be the measure of the element K. Then,∫
K̂

Π̂2v2 = |K|−1
∫
K

Π2v2 = |K|−1
∫
K

v2 = |K|−1 |K|
∫
K̂

v̂2 =

∫
K̂

v̂2

which means that Π̂2 also satisfies equation (13). Moreover, let us define the following:∣∣∣∥∥∥Π̂2v2

∥∥∥∣∣∣ =

∣∣∣∣∫
K̂

Π̂2v2

∣∣∣∣
It is clear that this is a norm in this specific case, since the function Π̂2v2 by definition is
the bubble in the reference element. Hence,

∣∣∣∫K̂ Π̂2v2

∣∣∣ = 0 if and only if Π̂2v2 = 0.
Using the definition of Πh and the equality in (13), we get

(µh, v2 −Πhv2)Ω2 = (µh, (v2 −Π1v2)−Π2(v2 −Π1v2))Ω2 = 0 ∀µh ∈ Λh

which proves that the proposed operator Πh satisfies condition ii) in (11).
Now, we need to show condition i) for all v2 ∈ V2, that is:

‖Πhv2‖V2
= ‖Π1v2 + Π2(v2 −Π1v2)‖V2

≤ C ‖v2‖V2
. (14)
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It is clear that (12b) implies

‖Π1v2‖V2
≤ C ‖v2‖V2

. (15)

For the sake of simplicity, let w = v2 −Π1v2 and write the H1-norm as follows:

‖Π2w‖21,Ω2
= ‖Π2w‖20,Ω2

+ |Π2w|21,Ω2
(16)

For all K ∈ T2, we estimate the first term in (16) as follows:

‖Π2w‖0,K ≤ C |K|
1
2

∥∥∥Π̂2w
∥∥∥

0,K̂
mapping to the reference element K̂

≤ C |K| 12
∣∣∣∣∫
K̂

Π̂2w

∣∣∣∣ by equivalence of norms in finite dimensions

= C |K| 12
∣∣∣∣∫
K̂

ŵ

∣∣∣∣ since Π̂2 satisfies (13)

≤ C |K| 12 ‖ŵ‖0,K̂ by Cauchy-Schwarz inequality

≤ C |K| 12 |K|− 1
2 ‖w‖0,K mapping back to the physical element K

= C ‖w‖0,K
Similarly, using the same argument as before we have

‖∇Π2w‖0,K ≤ C h−1
K |K| 12

∣∣∣Π̂2w
∣∣∣
1,K̂
≤ C h−1

K |K| 12
∣∣∣∣∫
K̂

Π̂2w

∣∣∣∣
≤ C h−1

K |K| 12
∣∣∣∣∫
K̂

ŵ

∣∣∣∣ ≤ C h−1
K |K| 12 ‖ŵ‖0,K̂ .

Mapping back to the current element K, we obtain:

‖∇Π2w‖0,K ≤ C h−1
K |K| 12 |K|− 1

2 ‖w‖0,K = C h−1
K ‖w‖0,K . (17)

By substituting (17) in (16) and using the bounds of Π1 in (12a), we get

‖Π2(v2 −Π1v2)‖2V2
≤ C

∑
K∈T2

h−2
K ‖v2 −Π1v2‖20,K ≤ C ‖v2‖2V2

. (18)

Using the triangle inequality, and applying the results of (15) and (18), yield that condition
i) holds, in fact

‖Πhv2‖V2
= ‖Π1v2 + Π2(v2 −Π1v2)‖V2

≤ ‖Π1v2‖V2
+ ‖Π2(v2 −Π1v2)‖V2

≤ C ‖v2‖V2
.

This concludes the proof and shows that the H1− stability of the constructed Fortin op-
erator Πh is satisfied. Therefore, the discrete inf-sup condition (9) holds. ♦

Remark 3. Proposition 3.2 shows rigorously that the inf-sup condition for Element 1
and Element 2 is satisfied uniformly. The bubble function in the space V2h is necessary
for the stability of the element. In fact, in Section 4.1 we give numerical evidence that we
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do not have a uniform inf-sup bound if we modify Element 1 and remove the bubble to
become Q1 −Q1 − P0.

Thanks to Propositions 3.1 and 3.2 there exists a unique stable solution (uh, u2h, λh)

for Problem 2.3 in the spaces Vh × V2h × Λh that are defined in (6) and (7). Moreover,
by taking into consideration the regularity results of the solutions u and u2 recalled in
Remark 1, we can state the following a priori error estimate.

Proposition 3.3 (Error estimate). Given (f, f2) ∈ L2(Ω)×L2(Ω2). Let (u, u2, λ) ∈
V ×V2×Λ and (uh, u2h, λh) ∈ Vh×V2h×Λh be the solutions of Problem 2.2 and Prob-
lem 2.3, respectively. We consider Element 1 and Element 2 defined in (6) and (7). Then,
under the assumption that the mesh T2 is quasi uniform, the following error estimate holds
true:

‖u− uh‖V + ‖u2 − u2h‖V2
+ ‖λ− λh‖Λ

≤ C
(
hr−1 ‖u‖r,Ω + max(hs−1

2 , h1−t
2 ) ‖u2‖s,Ω2

+ h2

∥∥∥∥ ββ2
f2 − f

∥∥∥∥
0,Ω2

)

with 1 < r < 3/2 and 3/2 < s ≤ 2, defined in Remark 1, and for 1/2 < t < 1.

Proof. Thanks to the continuous elker and inf-sup conditions and their discrete version in
Propositions 3.1 and 3.2, the theory of saddle point problem yields the usual quasi-optimal
error estimate (see [2, Th. 5.2.2]), that in this case, reads as follows

‖u− uh‖V + ‖u2 − u2h‖V2
+ ‖λ− λh‖Λ

≤ C
(

inf
v∈Vh

‖u− v‖V + inf
v2∈V2h

‖u2 − v2‖V2
+ inf
µ∈Λh

‖λ− µ‖Λ
)
.

As a consequence of the regularity of u and u2 reported in Remark 1, standard arguments
on the approximation error for the spaces Vh and V2h imply that

inf
v∈Vh

‖u− v‖V ≤ Chr−1|u|r,Ω

inf
v2∈V2h

‖u2 − v2‖V2
≤ Chs−1

2 |u2|s,Ω2
.

The estimate of the best approximation of λ requires a more careful analysis. A similar
consideration has been performed in [1, Prop. 6] in a different setting. Actually, taking
into account (4), the Lagrange multiplier can be represented as the sum of two pieces
λ = λ1 + λ2 with

〈λ1, v2〉 =

∫
Ω2

((β/β2)f2 − f)v2 dx

〈λ2, v2〉 =

∫
Γ

(β2 − β)∇u2 · n2v2 dγ.

(19)

We treat separately the two pieces and look for two elements in Λh which approximate
λ1 and λ2.

Since f ∈ L2(Ω), f2 ∈ L2(Ω2) and since we assumed the bound (2), the first
equality in (19) implies that λ1 ∈ L2(Ω2) with ‖λ1‖0,Ω2

≤ ‖(β/β2)f2 − f‖0,Ω2
. Let
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P0 : L2(Ω2)→ Λh be the L2-projection onto Λh, we set λ1h = P0λ1 ∈ Λh with

(λ1 − λ1h, µh) = 0 ∀µh ∈ Λh.

Then we observe that

‖λ1 − λ1h‖Λ = sup
v2∈V2

〈λ1 − λ1h, v2〉
‖v2‖V2

= sup
v2∈V2

(λ1 − λ1h, v2)

‖v2‖V2

,

but

(λ1 − λ1h, v2) = (λ1 − λ1h, v2 − P0v2) = (λ1, v2 − P0v2)

≤ ‖λ1‖0,Ω2
‖v2 − P0v2‖0,Ω2

≤ C ‖(β/β2)f2 − f‖0,Ω2
h2 ‖v2‖V2

.

Therefore we end up with

‖λ1 − λ1h‖Λ ≤ Ch2 ‖(β/β2)f2 − f‖0,Ω2
. (20)

Let us now construct an approximation of λ2 and bound the approximation error. Re-
mark 1 states that u2 ∈ Hs(Ω2) for 3/2 < s ≤ 2. Therefore the trace of the normal
derivative of u2 belongs to Hs−3/2(Γ) and we can infer from the second equality in (19)
that λ2 ∈ H−t(Ω2) with 1/2 < t < 1, namely by trace inequality we have

‖λ2‖H−t(Ω2) = sup
v2∈Ht(Ω2)

〈λ2, v2〉
‖v2‖Ht(Ω2)

= sup
v2∈Ht(Ω2)

∫
Γ
(β2 − β)∇u2 · n2v2 dγ

‖v2‖Ht(Ω2)

≤ sup
v2∈Ht(Ω2)

‖∇u2 · n2‖Hs−3/2(Γ) ‖v2‖H3/2−s(Γ)

‖v2‖Ht(Ω2)

≤ C sup
v2∈Ht(Ω2)

‖u2‖Hs(Ω2) ‖v2‖Ht−1/2(Γ)

‖v2‖Ht(Ω2)

≤ C sup
v2∈Ht(Ω2)

‖u2‖Hs(Ω2) ‖v2‖Ht(Ω2)

‖v2‖Ht(Ω2)

= C ‖u2‖Hs(Ω2) .

Let λ2h ∈ Λh be such that

〈λ2h, v2h〉 =

∫
Γ

(β2 − β)∇u2 · n2v2h dγ ∀v2h ∈ V2h

then it is easily seen that 〈λ2 − λ2h, v2h〉 = 0 for all v2h ∈ V2h so that we have for
v2h ∈ V2h

〈λ2 − λ2h, v2〉 = 〈λ2 − λ2h, v2 − v2h〉 = 〈λ2, v2 − v2h〉 − (λ2h, v2 − v2h). (21)

Using (19), we can apply trace inequalities and standard approximation results in V2h to
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achieve the following estimate:

〈λ2, v2 − v2h〉 =

∫
Γ

(β2 − β)∇u2 · n2(v2 − v2h) dγ

≤ ‖∇u2 · n2‖Hs−3/2(Γ) ‖v2 − v2h‖H3/2−s(Γ)

≤ C ‖u2‖Hs(Ω2) h
s−1
2 ‖v2‖H1/2(Γ)

≤ Chs−1
2 ‖u2‖Hs(Ω2) ‖v2‖H1(Ω2) .

It remains to bound the second term in (21): we have

(λ2h, v2 − v2h) ≤ ‖λ2h‖0,Ω2
‖v2 − v2h‖0,Ω2

≤ Ch2 ‖λ2h‖0,Ω2
‖v2‖1,Ω2

In order to conclude the proof, we now estimate ‖λ2h‖0,Ω2
. Recalling the Fortin operator

Πh satisfying (11), we have

‖λ2h‖0,Ω2
= sup
v2∈V2

〈λ2h, v2〉
‖v2‖0,Ω2

= sup
v2∈V2

〈λ2h,Πhv2〉
‖v2‖0,Ω2

= sup
v2∈V2

〈λ2,Πhv2〉
‖v2‖0,Ω2

≤ sup
v2∈V2

‖λ2‖H−t(Ω2) ‖Πhv2‖Ht(Ω2)

‖v2‖0,Ω2

≤ Ch−t2 ‖u2‖Hs(Ω2) sup
v2∈V2

‖Πhv2‖0,Ω2

‖v2‖0,Ω2

The last supremum can be bounded if we provide a uniform L2(Ω2) estimate of the Fortin
operator. Looking at the construction of the Fortin operator as Πhv2 = Π1v2 + Π2(v2 −
Π1v2), and inspecting the proof of its stability, it turns out that this can be done if we
replace the Clément interpolation Π1 with an interpolation which is bounded in L2(Ω2).
This can be done by adopting the quasi-interpolation operator introduced in [9], denoted
again Π1 for simplicity, and which has been proved to have the required stability

‖Π1v2‖0,Ω2
≤ C‖v2‖0,Ω2

.

We finally get

(λ2h, v2 − v2h) ≤ Ch2 ‖λ2h‖0,Ω2
‖v2‖1,Ω2

≤ Ch1−t
2 ‖u2‖Hs(Ω2)‖v2‖H1(Ω2).

Putting together all the pieces we see that the best approximations of u, u2, and λ converge
with order hr−1, hs−1

2 , and h1−t
2 , respectively. In the case when h2 < 1, since s − 1 >

1− t, we get that hs−1
2 is dominated by h1−t

2 . Therefore, the final rate of convergence is
given by the maximum between hr−1 and h1−t

2 . ♦

Remark 4. This paper only considers quadrilateral and hexahedra meshes. However,
all results and proofs might be easily extended to triangular and tetrahedra meshes with
the corresponding element choices P1 − (P1 +B)− P0 and P2 − (P2 +B)− P0 where
B is a proper bubble function associated to an internal node.
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4 Numerical results

In this section, we present some numerical tests that confirm the expected rate of conver-
gence of our schemes and show numerically that the discrete inf-sup condition holds true
for the schemes that we have discussed.

We consider the case of a two-dimensional setting and choose Ω = [0, 6]× [0, 6] and
Ω2 = [e, 1 + π] × [e, 1 + π]. This specific choice of the domains was previously used
in [6] using the finite element Q1−Q1−Q1 and was chosen in order to have the meshes
not conforming at the interface. In addition, the right hand sides of the problem are fixed
to be f = 1 and f2 = 1.

Before we start let us describe how we treat numerically the coupling term
(λh, vh|Ω2

)Ω2
in Problem 2.3 where λh ∈ Λh and vh ∈ Vh. This term is represented as

the L2 scalar product in Ω2. Evaluating this term requires the evaluation of the following
integral: ∫

Ω2

φiψj |Ω2
dx =

∑
K∈T2

∫
K

φiψj |Ω2
dx (22)

where φi i = 1, . . . ,dim(Λh) and ψj j = 1, . . . ,dim(Vh) are the basis functions that
span Λh and Vh, respectively. Thanks to the choice of Λh, φi = 1 on the element Ki ∈
T2 and vanishes elsewhere. Hence the integral in (22) reduces to the integral on the
intersection between Ki with the support of ψj .

To simplify the idea, consider the 2D case and assume that the support of φi is the
element Ki ∈ T2 colored with brown in Figure 6.A. We start by finding the geometric
intersections of elements in T with Ki. This leads us to the introduction of a new mesh
in Ω2, that we denote by T 2 with the property that each element K ∈ T 2 is contained in
one element in T as in Figure 6.B. This new mesh is also a quadrilateral mesh but finer
than T2. Therefore we have∫

Ω2

φiψj |Ω2
dx =

∫
Ki∩supp(ψj)

ψj dx

where Ki ∩ supp(ψj) is the rectangle colored in red in Figure 6.C.
This approach will give us an exact evaluation of the scalar product since it takes into

the account the exact region for which the two shape functions interact [3]. The procedure
for adapting this approach is briefly summarized bellow:

• Choose the order of the quadrature rule depending on the degree of ψj .

• Find the corresponding quadrature points and weights in the reference element K̂.
Denote by q̂k the kth quadrature point and by ŵk the associated quadrature weight.

• Map the quadrature points and weights to K where K = Ki ∩ supp(ψj). So, we
have wk =

∣∣K∣∣ ŵk, and ψj(qk) = ψ̂j(q̂k), see, for example, Figure 6.D.

• Evaluate the integral as follows:∫
Ω2

φiψj =

∫
K

ψj =
∣∣K∣∣ ∫

K̂

ψ̂j =
∣∣K∣∣∑

k

ŵkψ̂j(q̂k) =
∑
k

wkψj(qk).
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A: T2 and T .

→

B: T2 is a remesh of T2 .

→

C: Support ofφiψj .

→

D: Mapped quadrature points .

FIGURE 6: Intersection approach.

4.1 Numerical discrete inf-sup test

In this section, numerical tests on the discrete inf-sup bound of the proposed elements is
presented to validate the theoretical proofs given in Section 3.

For the same reason explained in Section 3, it is enough to show that there exists a
constant γ2 > 0 such that the following inf-sup bound is satisfied:

sup
v2h∈V2h

(µh, v2h)Ω2

‖v2h‖V2

≥ γ2 ‖µh‖Λ (23)

In order to estimate numerically the constant γ2, we use the following standard procedure.
Let N1 and N2 be the two matrices associated with the following norms:

‖v2‖2V2
= |v2|2V2

+ ‖v2‖20,Ω2
= vT2 N2v2 v2 ∈ V2h

‖µh‖2Λ ≈ h2 ‖µh‖20,Ω2
= µTh (h2N1)µh µh ∈ Λh

Arguing as in [16], the eigenvalue equation associated with this inf-sup condition is

(C2) (h2N1)
−1 (

CT2
)
v2 = σN2v2 (24)

where C2 is the operator associated with the bilinear form (µh, v2h)Ω2
. If the considered

finite element satisfies the inf-sup condition, then, with increase refinements, the square
root of the smallest eigenvalue σ1 is bounded from below away from zero independently
from the mesh sizes. This bound is the desired inf-sup bound.

The problem is solved in a sequence of five refinements. The results are plotted using
logarithmic scaling. In Figure 7 we report the results of our test for the two elements
presented in Section 3 together with the test for the element Q1 − Q1 − P0, where we
didn’t add the bubble to the space V2h.

It is clear that Element 1 and Element 2 are stable as the mesh is refined, that is the
inf-sup constant doesn’t degenerate, while the element without the bubble is not, that is,
the inf-sup constant tends to zero as h goes to zero.
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FIGURE 7: Numerical discrete Inf-Sup Test.

4.2 Rate of convergence

In this section, we show the numerical results of the rate of convergence of our proposed
elements. We look at the performance by allowing the diffusion coefficients to vary as
follow:

Case 1: β < β2

Case 2: β > β2

Clearly, Case 2 is violating the elker condition constraint in Proposition 3.1. To ob-
tain a better understanding of the performance, each case is tested with five different
choices of the ratio between mesh-sizes h

h2
denoted by r. In particular, r takes the values{

1
2 ,

1
4 , 1, 2, 4

}
over eight cycles of global uniform refinements and up to 4002 grid points.

Case 1: In this case β2 − β > 0, hence the elker condition is satisfied. We test two
situations, β = 1, β2 = 10 and β = 1, β2 = 10000. In the first situation, when the
difference is roughly small, all proposed elements perform more or less the same. They
converge with optimal rate. We found that the L2 error of u converges asO(h) and theH1

error as O(h
1
2 ). On the other hand, when the difference is larger, the elements converge

optimally when the ratio r is less than or equal to 1. Figures 11, 13, 14, and 16 show a
linear relation when the ratio r is small. As r increases, i.e. T is coarser than T2, we
see more oscillations in the convergence plots. This could be related to the fact that the
material with smaller diffusion coefficient requires a finer mesh since the solution changes
rapidly there.

In general, those oscillations are not surprising. In one refinement step we might, by
coincidence, have matching nodes in some places on Γ. However, in the next step, we
could easily loose this matching at the interface. Nonetheless, errors were rather small
and Tables 1 - 18 show that both the L2 and H1 errors are less than 10−2. (n.o.e. refers
to the number of elements used).

Case 2: In this case we have that β2 < β. We, first, considered the case where
the difference β2 − β is relatively small; namely β = 10, β2 = 1 . Surprisingly, we
found that Element 2 is stable and provide the expected rate of convergence. As shown in
Figure 15, the plots of the error for Element 2 are smooth independently from the ratio of
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the mesh-sizes. Element 1, also, converged as expected when the ratio r is greater than
one, as can be seen in Figure 12.

We extend the study of this case by increasing the difference between the coefficients
and let β2 << β. We tested the case when β = 10000 and β2 = 1. In this particular
situation, all elements did not converge. The results of Case 2 suggest that the elker
condition can be slightly weakened, perhaps under some constraints on the ratio between
mesh sizes r.

To this end, we can say that by using a discontinuous Lagrange multiplier space, we
were able to achieve similar results to what was obtained in [6] in the case when an L2

scalar product is used to evaluate the duality term numerically. Results are similar in
the sense that, in Case 1 when β = 1, β2 = 10, elements converges optimally and less
oscillations appear as the ratio decreases. The situation when β = 1, β2 = 10000 was not
covered in their work. In Case 2, Element 1 shows an optimal convergence when the ratio
is greater than 1 which is similar to what was found in [6]. However, Element 2 in this
case outperforms their results and converges with optimal rate independently of the ratio.

We conclude this section by going back to the element Q1 − Q1 − P0 due to its
appeal coming from its easier implementation. Recall that, in Section 4.1, we showed
numerically that this element does not pass the inf-sup test. However, Figure 8 shows that
it converges with optimal rate in Case 1 when the difference β2 − β is small enough. As
the difference increases, the element convergences optimally when the ratio r is less than
or equal to 1, as can be seen in Figure 10. Lastly, in Case 2, this element fails to converge
as shown in Figure 9.

5 Conclusion

This paper proposes two elements for elliptic interface problems with jump coefficients.
They were proven to be stable theoretically. The numerical results confirmed that the
discrete inf-sup is bounded away from zero for the proposed elements. Moreover, the
convergence rate is as expected. In the case of β = 10, β2 = 1, the elements converge
when the ratio r is greater than or equal to 1. On the other hand, in the case when β2 −
β > 0, the elements converge when the ratio r is less than or equal to 1. In all cases,
Element 2 outperforms Element 1. These results extend those of [6] to the case where
a discontinuous Lagrange multiplier is used. A potential future work would be to study
the a posteriori error estimate for those schemes and use the results to apply some local
refinements to control the overall error and reduce the computational cost by refining only
where it is needed. Moreover, this work could be extended to a fluid structure interaction
problem, which was the main motivation of our paper.
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FIGURE 8: Convergence FDDLM Q1 −Q1 − P0-FEM, u error, β = 1 β2 = 10.
ref. step n.o.e. r=0.5 r=0.25 r=1 r=2 r=4
1 502 5.42× 10−3 1.17× 10−2 2.24× 10−3 4.50× 10−3 4.64× 10−3

2 1002 2.61× 10−3 5.82× 10−3 2.27× 10−4 5.00× 10−4 3.20× 10−4

3 1502 1.82× 10−3 3.91× 10−3 7.03× 10−4 1.70× 10−3 1.60× 10−3

4 2002 1.32× 10−3 2.93× 10−3 1.58× 10−4 2.00× 10−4 4.53× 10−4

5 2502 1.10× 10−3 2.36× 10−3 4.40× 10−4 1.10× 10−3 9.94× 10−4

6 3002 8.89× 10−4 1.97× 10−3 1.24× 10−4 3.00× 10−4 3.88× 10−4

7 3502 7.94× 10−4 1.70× 10−3 3.18× 10−4 8.00× 10−4 6.35× 10−4

8 4002 6.74× 10−4 1.48× 10−3 1.28× 10−4 3.00× 10−4 3.74× 10−4

TABLE 1
FD/DLM Q1 −Q1 − P0-FEM - L2 Error table for u, β = 1 β2 = 10.

ref. step n.o.e. r=0.5 r=0.25 r=1 r=2 r=4
1 502 5.23× 10−2 6.67× 10−2 4.50× 10−2 4.67× 10−2 4.65× 10−2

2 1002 3.30× 10−2 4.59× 10−2 1.73× 10−2 1.82× 10−2 1.78× 10−2

3 1502 2.77× 10−2 3.74× 10−2 2.24× 10−2 2.45× 10−2 2.37× 10−2

4 2002 2.13× 10−2 3.14× 10−2 7.48× 10−3 7.10× 10−3 7.97× 10−3

5 2502 2.10× 10−2 2.87× 10−2 1.74× 10−2 1.94× 10−2 1.87× 10−2

6 3002 1.72× 10−2 2.57× 10−2 5.63× 10−3 5.80× 10−3 5.93× 10−3

7 3502 1.77× 10−2 2.43× 10−2 1.47× 10−2 1.64× 10−2 1.58× 10−2

8 4002 1.38× 10−2 2.15× 10−2 3.57× 10−3 4.50× 10−3 4.77× 10−3

TABLE 2
FD/DLM Q1 −Q1 − P0-FEM - H1 Error table for u, β = 1 β2 = 10.
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FIGURE 9: Convergence FDDLM Q1 −Q1 − P0-FEM, u error, β = 10 β2 = 1.
ref. step n.o.e. r=0.5 r=0.25 r=1 r=2 r=4
1 502 3.55× 10−1 1.46× 10−1 1.79× 10−1 4.25× 10−1 1.89× 10−1

2 1002 6.86× 10−2 6.71× 101 3.11× 10−2 2.25× 10−1 3.53× 10−1

3 1502 3.58× 10−2 6.98× 10−2 1.06× 10−2 3.23× 10−1 4.27× 10−1

4 2002 2.60× 100 6.56× 10−1 1.51× 10−2 4.67× 10−1 3.26× 10−1

5 2502 3.55× 10−1 4.58× 10−2 8.31× 10−3 9.33× 10−1 2.00× 10−1

6 3002 2.37× 10−1 1.05× 10−1 2.39× 10−3 4.81× 10−1 2.40× 10−1

7 3502 1.92× 10−1 1.81× 10−1 7.35× 10−3 5.21× 10−1 1.12× 10−1

8 4002 1.52× 10−1 7.51× 10−2 4.94× 10−3 3.38× 10−1 5.09× 10−1

TABLE 3
FD/DLM Q1 −Q1 − P0-FEM - L2 Error table for u, β = 10 β2 = 1.

ref. step n.o.e. r=0.5 r=0.25 r=1 r=2 r=4
1 502 1.75× 100 5.37× 10−1 1.78× 100 6.24× 100 2.48× 100

2 1002 7.47× 10−1 2.96× 102 1.05× 100 5.93× 100 1.87× 100

3 1502 6.33× 10−1 5.77× 10−1 4.80× 10−1 6.08× 100 6.86× 100

4 2002 5.39× 101 7.13× 100 9.93× 10−1 2.63× 100 7.55× 100

5 2502 1.29× 101 5.97× 10−1 5.14× 10−1 3.67× 101 6.10× 100

6 3002 1.05× 101 1.81× 100 2.72× 10−1 1.75× 101 9.50× 10−1

7 3502 8.12× 100 6.21× 100 5.15× 10−1 3.72× 101 4.67× 100

8 4002 6.01× 100 1.33× 100 5.03× 10−1 1.81× 101 5.54× 101

TABLE 4
FD/DLM Q1 −Q1 − P0-FEM - H1 Error table for u, β = 10 β2 = 1.
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FIGURE 10: Convergence FDDLM Q1 −Q1 − P0-FEM, u error, β = 1 β2 = 10000.
ref. step n.o.e. r=0.5 r=0.25 r=1 r=2 r=4
1 502 7.58× 10−3 1.58× 10−2 3.18× 10−3 9.56× 10−3 9.59× 10−3

2 1002 3.76× 10−3 8.13× 10−3 3.52× 10−4 6.36× 10−4 1.55× 10−3

3 1502 2.65× 10−3 5.55× 10−3 1.01× 10−3 2.53× 10−3 2.72× 10−3

4 2002 1.95× 10−3 4.21× 10−3 2.65× 10−4 1.15× 10−3 2.89× 10−3

5 2502 1.64× 10−3 3.42× 10−3 6.60× 10−4 1.48× 10−3 1.48× 10−3

6 3002 1.33× 10−3 2.87× 10−3 1.87× 10−4 1.62× 10−3 2.31× 10−3

7 3502 1.19× 10−3 2.49× 10−3 4.88× 10−4 1.07× 10−3 1.07× 10−3

8 4002 1.01× 10−3 2.18× 10−3 2.07× 10−4 1.44× 10−3 1.64× 10−3

TABLE 5
FD/DLM Q1 −Q1 − P0-FEM - L2 Error table for u, β = 1 β2 = 10000.

ref. step n.o.e. r=0.5 r=0.25 r=1 r=2 r=4
1 502 6.09× 10−2 7.88× 10−2 5.15× 10−2 6.46× 10−2 6.47× 10−2

2 1002 3.93× 10−2 5.53× 10−2 1.94× 10−2 2.12× 10−2 2.32× 10−2

3 1502 3.35× 10−2 4.56× 10−2 2.65× 10−2 3.25× 10−2 3.32× 10−2

4 2002 2.64× 10−2 3.88× 10−2 9.61× 10−3 1.52× 10−2 3.07× 10−2

5 2502 2.57× 10−2 3.53× 10−2 2.11× 10−2 2.57× 10−2 2.57× 10−2

6 3002 2.13× 10−2 3.19× 10−2 5.97× 10−3 2.25× 10−2 3.04× 10−2

7 3502 2.20× 10−2 3.01× 10−2 1.81× 10−2 2.16× 10−2 2.16× 10−2

8 4002 1.74× 10−2 2.68× 10−2 5.25× 10−3 2.33× 10−2 2.61× 10−2

TABLE 6
FD/DLM Q1 −Q1 − P0-FEM - H1 Error table for u, β = 1 β2 = 10000.
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FIGURE 11: Convergence FDDLM Q1 − (Q1 +B)− P0-FEM - u error,β = 1 β2 = 10.
ref. step n.o.e. r=0.5 r=0.25 r=1 r=2 r=4
1 502 5.57× 10−3 1.19× 10−2 2.33× 10−3 3.51× 10−3 4.21× 10−3

2 1002 2.69× 10−3 5.96× 10−3 3.66× 10−4 2.50× 10−4 2.51× 10−4

3 1502 1.87× 10−3 4.00× 10−3 7.38× 10−4 1.15× 10−3 1.28× 10−3

4 2002 1.37× 10−3 3.01× 10−3 2.24× 10−4 1.27× 10−4 1.75× 10−4

5 2502 1.14× 10−3 2.42× 10−3 4.59× 10−4 6.98× 10−4 7.53× 10−4

6 3002 9.18× 10−4 2.02× 10−3 1.63× 10−4 1.20× 10−4 6.76× 10−5

7 3502 8.17× 10−4 1.74× 10−3 3.32× 10−4 4.85× 10−4 5.28× 10−4

8 4002 6.95× 10−4 1.52× 10−3 1.55× 10−4 9.49× 10−5 4.01× 10−5

TABLE 7
FD/DLM Q1 − (Q1 +B)− P0-FEM - L2 Error table for u, β = 1 β2 = 10.

ref. step n.o.e. r=0.5 r=0.25 r=1 r=2 r=4
1 502 5.22× 10−2 6.66× 10−2 4.49× 10−2 4.39× 10−2 4.58× 10−2

2 1002 3.30× 10−2 4.59× 10−2 1.75× 10−2 1.77× 10−2 1.77× 10−2

3 1502 2.76× 10−2 3.74× 10−2 2.23× 10−2 2.26× 10−2 2.34× 10−2

4 2002 2.12× 10−2 3.14× 10−2 7.59× 10−3 6.91× 10−3 7.42× 10−3

5 2502 2.09× 10−2 2.87× 10−2 1.73× 10−2 1.79× 10−2 1.84× 10−2

6 3002 1.72× 10−2 2.57× 10−2 5.71× 10−3 5.63× 10−3 5.68× 10−3

7 3502 1.77× 10−2 2.43× 10−2 1.46× 10−2 1.52× 10−2 1.56× 10−2

8 4002 1.38× 10−2 2.15× 10−2 3.55× 10−3 3.93× 10−3 4.13× 10−3

TABLE 8
FD/DLM Q1 − (Q1 +B)− P0-FEM - H1 Error table for u, β = 1 β2 = 10.
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FIGURE 12: Convergence FDDLM Q1 − (Q1 +B)− P0-FEM - u error,β = 10 β2 = 1.
ref. step n.o.e. r=0.5 r=0.25 r=1 r=2 r=4
1 502 3.63× 10−1 1.56× 10−1 1.69× 10−2 2.88× 10−2 2.65× 10−2

2 1002 6.26× 10−2 2.84× 10−1 1.44× 10−2 1.58× 10−2 1.16× 10−2

3 1502 1.39× 10−1 2.14× 10−1 1.09× 10−2 1.09× 10−2 8.12× 10−3

4 2002 4.26× 10−2 6.02× 10−2 7.86× 10−3 6.58× 10−3 3.66× 10−3

5 2502 3.36× 10−2 3.29× 10−2 3.71× 10−3 7.70× 10−3 6.85× 10−3

6 3002 1.88× 10−2 2.53× 10−1 6.08× 10−3 3.25× 10−3 6.97× 10−4

7 3502 2.16× 10−2 2.29× 10−1 7.10× 10−3 5.11× 10−3 4.14× 10−3

8 4002 2.00× 10−2 6.05× 10−2 4.06× 10−3 3.46× 10−3 2.66× 10−3

TABLE 9
FD/DLM Q1 − (Q1 +B)− P0-FEM - L2 Error table for u,β = 10 β2 = 1.

ref. step n.o.e. r=0.5 r=0.25 r=1 r=2 r=4
1 502 4.54× 100 6.01× 10−1 4.79× 10−1 2.21× 10−1 2.25× 10−1

2 1002 8.83× 10−1 2.15× 100 1.48× 10−1 1.21× 10−1 9.99× 10−2

3 1502 3.78× 100 1.82× 100 2.53× 10−1 1.12× 10−1 1.06× 10−1

4 2002 1.14× 100 7.37× 10−1 2.14× 10−1 7.95× 10−2 7.57× 10−2

5 2502 1.26× 100 6.09× 10−1 1.81× 10−1 1.02× 10−1 9.81× 10−2

6 3002 7.55× 10−1 3.91× 100 6.63× 10−2 2.91× 10−2 1.08× 10−2

7 3502 1.09× 100 6.24× 100 6.73× 10−1 8.58× 10−2 8.72× 10−2

8 4002 1.77× 100 2.20× 100 5.88× 10−2 5.04× 10−2 4.39× 10−2

TABLE 10
FD/DLM Q1 − (Q1 +B)− P0-FEM - H1 Error table for u, β = 10 β2 = 1.
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FIGURE 13: Convergence FDDLMQ1−(Q1+B)−P0-FEM - u error,β = 1 β2 = 10000.
ref. step n.o.e. r=0.5 r=0.25 r=1 r=2 r=4
1 502 7.58× 10−3 1.58× 10−2 3.18× 10−3 9.48× 10−3 9.58× 10−3

2 1002 3.76× 10−3 8.13× 10−3 3.52× 10−4 5.95× 10−4 1.00× 10−3

3 1502 2.65× 10−3 5.55× 10−3 1.01× 10−3 2.49× 10−3 2.63× 10−3

4 2002 1.95× 10−3 4.21× 10−3 2.65× 10−4 6.70× 10−4 2.36× 10−3

5 2502 1.64× 10−3 3.42× 10−3 6.60× 10−4 1.48× 10−3 1.48× 10−3

6 3002 1.33× 10−3 2.87× 10−3 1.87× 10−4 9.35× 10−4 2.18× 10−3

7 3502 1.19× 10−3 2.49× 10−3 4.88× 10−4 1.07× 10−3 1.07× 10−3

8 4002 1.01× 10−3 2.18× 10−3 2.07× 10−4 1.14× 10−3 1.61× 10−3

TABLE 11
FD/DLM Q1 − (Q1 +B)− P0-FEM - L2 Error table for u,β = 1 β2 = 10000.

ref. step n.o.e. r=0.5 r=0.25 r=1 r=2 r=4
1 502 6.09× 10−2 7.88× 10−2 5.15× 10−2 6.42× 10−2 6.47× 10−2

2 1002 3.93× 10−2 5.53× 10−2 1.94× 10−2 2.12× 10−2 2.17× 10−2

3 1502 3.35× 10−2 4.56× 10−2 2.65× 10−2 3.24× 10−2 3.28× 10−2

4 2002 2.64× 10−2 3.88× 10−2 9.61× 10−3 1.21× 10−2 2.57× 10−2

5 2502 2.57× 10−2 3.53× 10−2 2.11× 10−2 2.57× 10−2 2.57× 10−2

6 3002 2.13× 10−2 3.19× 10−2 5.97× 10−3 1.48× 10−2 2.89× 10−2

7 3502 2.20× 10−2 3.01× 10−2 1.81× 10−2 2.16× 10−2 2.16× 10−2

8 4002 1.74× 10−2 2.68× 10−2 5.25× 10−3 1.92× 10−2 2.56× 10−2

TABLE 12
FD/DLM Q1 − (Q1 +B)− P0-FEM - H1 Error table for u, β = 1 β2 = 10000.
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FIGURE 14: Convergence FDDLM Q2 −Q2 − P0-FEM -u error, β = 1 β2 = 10.
ref. step n.o.e. r=0.5 r=0.25 r=1 r=2 r=4
1 502 6.28× 10−3 1.26× 10−2 2.94× 10−3 1.01× 10−3 6.73× 10−4

2 1002 3.19× 10−3 6.33× 10−3 1.61× 10−3 3.37× 10−4 1.56× 10−4

3 1502 2.13× 10−3 4.24× 10−3 1.01× 10−3 3.62× 10−4 2.67× 10−4

4 2002 1.62× 10−3 3.20× 10−3 8.15× 10−4 2.03× 10−4 1.16× 10−4

5 2502 1.29× 10−3 2.56× 10−3 6.11× 10−4 2.48× 10−4 2.15× 10−4

6 3002 1.09× 10−3 2.15× 10−3 5.51× 10−4 1.53× 10−4 1.01× 10−4

7 3502 9.26× 10−4 1.84× 10−3 4.42× 10−4 1.87× 10−4 1.62× 10−4

8 4002 8.20× 10−4 1.62× 10−3 4.20× 10−4 1.35× 10−4 6.71× 10−5

TABLE 13
FD/DLM Q2 −Q2 − P0-FEM - L2 Error table for u, β = 1 β2 = 10.

ref. step n.o.e. r=0.5 r=0.25 r=1 r=2 r=4
1 502 4.98× 10−2 6.51× 10−2 3.77× 10−2 2.48× 10−2 1.79× 10−2

2 1002 3.14× 10−2 4.40× 10−2 2.20× 10−2 5.79× 10−3 4.74× 10−3

3 1502 2.93× 10−2 3.90× 10−2 2.18× 10−2 1.37× 10−2 9.62× 10−3

4 2002 2.22× 10−2 3.15× 10−2 1.54× 10−2 5.22× 10−3 4.73× 10−3

5 2502 2.26× 10−2 3.03× 10−2 1.66× 10−2 1.08× 10−2 7.86× 10−3

6 3002 1.78× 10−2 2.56× 10−2 1.20× 10−2 3.53× 10−3 3.55× 10−3

7 3502 1.89× 10−2 2.55× 10−2 1.37× 10−2 9.01× 10−3 6.88× 10−3

8 4002 1.52× 10−2 2.21× 10−2 1.02× 10−2 3.96× 10−3 4.30× 10−3

TABLE 14
FD/DLM Q2 −Q2 − P0-FEM - H1 Error table for u, β = 1 β2 = 10.
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FIGURE 15: Convergence FDDLM Q2 −Q2 − P0-FEM -u error, β = 10 β2 = 1.
ref. step n.o.e. r=0.5 r=0.25 r=1 r=2 r=4
1 502 4.04× 10−2 7.30× 10−2 2.57× 10−2 1.91× 10−2 1.75× 10−2

2 1002 1.92× 10−2 3.83× 10−2 1.04× 10−2 8.10× 10−3 6.60× 10−3

3 1502 1.30× 10−2 2.54× 10−2 7.83× 10−3 6.30× 10−3 5.20× 10−3

4 2002 9.58× 10−3 1.89× 10−2 5.45× 10−3 4.50× 10−3 3.90× 10−3

5 2502 7.84× 10−3 1.51× 10−2 5.01× 10−3 3.70× 10−3 3.10× 10−3

6 3002 6.19× 10−3 1.25× 10−2 3.13× 10−3 2.80× 10−3 1.90× 10−3

7 3502 5.66× 10−3 1.07× 10−2 3.77× 10−3 2.90× 10−3 2.60× 10−3

8 4002 4.67× 10−3 9.31× 10−3 2.54× 10−3 2.00× 10−3 1.50× 10−3

TABLE 15
FD/DLM Q2 −Q2 − P0-FEM - L2 Error table for u, β = 10 β2 = 1.

ref. step n.o.e. r=0.5 r=0.25 r=1 r=2 r=4
1 502 2.88× 10−1 3.76× 10−1 2.23× 10−1 1.81× 10−1 1.70× 10−1

2 1002 1.89× 10−1 2.68× 10−1 1.32× 10−1 1.08× 10−1 9.11× 10−2

3 1502 1.66× 10−1 2.28× 10−1 1.26× 10−1 1.03× 10−1 9.05× 10−2

4 2002 1.27× 10−1 1.85× 10−1 8.65× 10−2 7.13× 10−2 5.68× 10−2

5 2502 1.27× 10−1 1.77× 10−1 9.50× 10−2 7.37× 10−2 6.84× 10−2

6 3002 1.03× 10−1 1.51× 10−1 6.79× 10−2 5.71× 10−2 3.42× 10−2

7 3502 1.03× 10−1 1.46× 10−1 7.67× 10−2 5.87× 10−2 5.50× 10−2

8 4002 8.83× 10−2 1.31× 10−1 5.67× 10−2 4.44× 10−2 3.04× 10−2

TABLE 16
FD/DLM Q2 −Q2 − P0-FEM - H1 Error table for u, β = 10 β2 = 1.
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FIGURE 16: Convergence FDDLM Q2 −Q2 − P0-FEM -u error, β = 1 β2 = 10000.
ref. step n.o.e. r=0.5 r=0.25 r=1 r=2 r=4
1 502 8.32× 10−3 1.62× 10−2 3.96× 10−3 1.12× 10−3 7.42× 10−3

2 1002 4.35× 10−3 8.40× 10−3 2.24× 10−3 3.05× 10−4 5.44× 10−4

3 1502 2.93× 10−3 5.72× 10−3 1.41× 10−3 4.38× 10−4 2.31× 10−3

4 2002 2.25× 10−3 4.35× 10−3 1.15× 10−3 2.29× 10−4 6.91× 10−4

5 2502 1.80× 10−3 3.52× 10−3 8.69× 10−4 3.39× 10−4 1.38× 10−3

6 3002 1.53× 10−3 2.96× 10−3 7.94× 10−4 1.92× 10−4 4.66× 10−4

7 3502 1.31× 10−3 2.56× 10−3 6.33× 10−4 2.60× 10−4 9.83× 10−4

8 4002 1.17× 10−3 2.25× 10−3 6.10× 10−4 1.88× 10−4 3.47× 10−4

TABLE 17
FD/DLM Q2 −Q2 − P0-FEM - L2 Error table for u, β = 1 β2 = 10000.

ref. step n.o.e. r=0.5 r=0.25 r=1 r=2 r=4
1 502 6.06× 10−2 7.89× 10−2 4.62× 10−2 2.94× 10−2 4.12× 10−2

2 1002 3.90× 10−2 5.42× 10−2 2.75× 10−2 6.10× 10−3 1.10× 10−2

3 1502 3.61× 10−2 4.78× 10−2 2.70× 10−2 1.62× 10−2 2.35× 10−2

4 2002 2.78× 10−2 3.91× 10−2 1.93× 10−2 6.23× 10−3 1.56× 10−2

5 2502 2.80× 10−2 3.74× 10−2 2.06× 10−2 1.32× 10−2 1.86× 10−2

6 3002 2.23× 10−2 3.18× 10−2 1.51× 10−2 4.05× 10−3 1.53× 10−2

7 3502 2.34× 10−2 3.16× 10−2 1.70× 10−2 1.11× 10−2 1.65× 10−2

8 4002 1.91× 10−2 2.75× 10−2 1.28× 10−2 4.98× 10−3 1.39× 10−2

TABLE 18
FD/DLM Q2 −Q2 − P0-FEM - H1 Error table for u, β = 1 β2 = 10000.
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