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Abstract. We study a recent formulation for fluid-structure interaction problems based
on the use of a distributed Lagrange multiplier in the spirit of the fictitious domain
approach. In this paper, we focus our attention on a crucial computational aspect re-
garding the interface matrix for the finite element discretization: it involves integration of
functions supported on two different meshes. Several numerical tests show that accurate
computation of the interface matrix has to be performed in order to ensure the optimal
convergence of the method.

Keywords: fluid-structure interaction, fictitious domain, non-matching grids, mesh in-
tersection.

1. Introduction

The study of fluid-structure interaction problems, developed mainly from the second half
of the last century, embraces various scientific fields, such as Mathematics, Physics and
Engineering.

Methods for FSI problems can be divided into two large families.
Boundary-fitted approaches use a mesh for the fluid domain that deforms around a

Lagrangian mesh for the structure; these two meshes match on the shared interface. A
popular scheme of this category makes use of an arbitrary Lagrangian-Eulerian (ALE)
coordinate system [21, 15, 16, 22]. The main advantage is that the kinematic constraints
are satisfied by construction, but, on the other hand, strong distortions of the mesh could
be obtained.

For this reason, the so-called non-boundary-fitted methods were subsequently introduced.
In these cases a discretization of the solid structure is immersed in the fluid mesh. The
disadvantage that arises is a reduction in accuracy near the interface between fluid and
structure. This family includes several methods, developed to solve problems of various
kinds since there is no method that is optimal for all situations. Among them, we have the
level set formulation [14] for incompressible, immiscible Navier-Stokes equations separated
by a free surface and the Nitsche-XFEM [1, 13], introduced to study thin-walled elastic
structures immersed in an incompressible fluid.

The immersed boundary method [26, 25] is both a mathematical formulation and a nu-
merical scheme. Mathematically, Eulerian and Lagrangian variables are linked making use
of interaction equations involving Dirac delta functions. The numerical scheme consists in
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defining the Eulerian variables on a fixed Cartesian mesh and the Lagrangian variables
on the reference domain. Finally, the fictitious domain method [19, 20] was originally in-
troduced to study the particulate flow: indeed, the fluid domain is artificially extended to
include also particles, which are considered as solid bodies. With this methodology it is not
necessary to generate a new mesh at each time step: the solid body is represented making
use of a reference configuration, which is mapped at each time step to the actual position.

To develop our model, we started from a formulation based on the immersed boundary
method [10] and we moved towards the fictitious domain approach. In the case of the original
finite element immersed boundary method, the evolution of the structure is governed by an
ordinary differential equation that involves the position of the solid and the velocity of the
fluid. Starting from here, we then introduced a Lagrange multiplier with the effect that the
movement of the structure is managed through a bilinear form that contains the multiplier.
As part of our research, several theoretical aspects have been addressed over the years: in [7],
we showed the well-posedness of both continuous and discrete problems, in [9] the existence
and the uniqueness of the solution were proved in the case of the linearized problem. These
results are summarized in a unified setting in [8]. On the other hand, numerical aspects
have been studied only from the point of view of time discretization in [11]. We are dealing
with a monolithic scheme, based on solving the coupled system without separating the
equations for fluid and structure and characterized by the fact that the solid and the fluid
meshes are totally independent of each other. From the computational point of view, the
assembling of the interface matrix is based on integrations over the solid mesh involving
also the fluid basis functions. This operation can be carried out in two different ways: the
first one is based on the computation of the intersection between the two meshes, with the
aim of implementing a composite quadrature rule, on the other hand, the second one works
directly on the solid elements without involving preliminary geometric computations.

The computation of intersection between immersed meshes has been addressed in several
papers only from the computational point of view as a support for the simulation of fluid-
structure interactions or contact mechanics without emphasizing why such a procedure
is necessary. For instance, in [23], the goal is to develop an efficient parallel approach
for the variational transfer of information between two meshes, using the computation of
the intersection as starting point; in [17], the Sutherland-Hodgman algorithm for clipping
polygons is used in support of Galerkin projection for conservative interpolation of discrete
fields; finally, in [12], fast algorithms for the intersection of simplicial elements of different
dimensions in the three-dimensional space are presented as a support for XFEM and Mortar
methods.

Our aim is to show how this expensive geometric procedure is necessary in order to reach
the optimal convergence rate of the method. Indeed, we are going to show that skipping
the computation of the mesh intersection, we cannot reach the optimal convergence even if
we increase the precision of the used quadrature rule.

The structure of this article is the following one. In Section 2, we summarize the theoret-
ical background of our fluid-structure interaction problems starting from the Navier-Stokes
equation and emphasizing the fictitious domain framework. In particular, we focus our at-
tention on the case of a thick structure. Next, we briefly recall the time semi-discretization
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and its connection with stationary saddle-point problems that can be studied numerically
making use of the finite element method. In Section 5, we describe how the coupling matrix
can be assembled with the two methods mentioned above, paying also attention on algo-
rithmic aspects. Finally, in Section 6, we report several numerical tests showing how the
choice of the procedure for assembling the interface matrix affects the convergence of our
method.

2. Fictitious domain approach: problem setting

Let us consider the case of a fluid-structure interaction where a solid elastic body is
immersed in a two or three dimensional fluid. We denote by Ωf

t and Ωs
t the time dependent

regions in Rd (with d = 2, 3) occupied respectively by the fluid and the solid at the time
instant t. In particular, both cases of a solid of codimension zero and one are allowed in
our model, even if in this paper we are going to consider only the first case. We denote by
Ω the union between Ωf

t and Ωs
t such that it is not dependent on time, assuming also that

the solid interface ∂Ωs
t cannot touch the boundary of ∂Ω, i.e. ∂Ω∩ ∂Ωs

t = ∅. Moreover, the
solid is represented making use of a fixed reference domain B which is mapped at each time
instant to the actual domain Ωs

t through a mapping X : B → Ωs
t .

The mapping X represents the motion of the solid, while the fluid configuration is rep-
resented by the velocity uf and by the pressure pf . The solid unknown is time dependent
and is defined making use of a Lagrangian variable s ∈ B, while the fluid unknowns are
functions of time and of the Eulerian variable x. In this setting, each point x ∈ Ωs

t can be
represented in terms of the Lagrangian variable

x = X(s, t)

and the motion of the solid body is expressed by the kinematic equation

(1) us(x, t) =
∂X

∂t
(s, t) for x = X(s, t).

On the other hand, using the derivative with respect to s, we can introduce the deformation
gradient F = ∇s X and its determinant |F|; since we are going to consider the case of
incompressible solid materials, we have that |F| is constant in time and when the reference
domain B corresponds to the initial position Ωs

0 of the structure, we get |F| = 1.
For the fluid, we denote by ρf the density and by σf the Cauchy stress tensor defined,

using the viscosity νf > 0 and the symmetric gradient ε, as

σf = −pf I + νf ε(u
f );

these objects are involved in the incompressible Navier-Stokes equations which describe the
fluid dynamic in Ωf

t as follows

(2)
ρf

(
∂uf

∂t
+ uf · ∇uf

)
= divσf

div uf = 0.
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For the solid, we assume that the material is incompressible but also viscoelastic, hence
we describe it with a Cauchy stress tensor made of two contributions σs = σsf + σss: in
details, σsf is a term analogous to the fluid stress σf but defined using the pressure ps

which is the Lagrange multiplier associated with the incompressibility condition, while σss
depends on the Piola-Kirchhoff elasticity stress tensor P via the Piola transformation; we
have respectively

σsf = −psI + νs ε(u
s)

σss = |F|−1 PFT

where we denote by νs > 0 the body viscosity. Furthermore, a potential energy density
W (F, s, t) can be used for modeling the elastic part of the stress; we have that

P(F, s, t) =
∂W

∂F
(F, s, t).

At this point, we have all the ingredients we need to express the equations representing
the solid behavior, indeed denoting by ρs the solid density, we can write

(3) ρs
∂2X

∂2t
= divs

(
|F|σsfF−T + P(F)

)
in B

div us = 0 in Ωs
t .

To complete the model we need to be careful with respect to the behavior of our system
on the interface Γt and prescribe initial and boundary conditions. In particular, we need to
enforce continuity of velocity and Cauchy stress, hence we impose the following transmission
conditions

(4)
uf = us on ∂Ωs

t

σfnf = −
(
σsf + |F|−1 PFT

)
ns on ∂Ωs

t

where ns and nf denote the outer unit normal vectors to Ωs
t and Ωf

t , respectively. Finally,
we choose the following conditions

(5)

uf (0) = uf0 in Ωf
0

us(0) = us0 in Ωs
0

X(0) = X0 in B

uf = 0 on ∂Ω.

We now recall some standard notations in functional analysis [24] we are going to use
in the following. Given a domain D, we denote by L2(D) the space of square integrable
functions on D, while for the standard Sobolev spaces we use W s,q(D), where s ∈ R
indicates the differentiability and q ∈ [1,∞] the integrability exponent. When q = 2, the
usual notation Hs(D) is used. Furthermore, L2

0(D) is the subspace of zero mean valued
functions, while H1

0 (D) is the subset of H1(D) with zero trace on the boundary of D. The
norm in Hs(D) is denoted by ‖·‖s,D and (·, ·)D stands for the scalar product of L2(D). The
indication of the domain will be omitted when no confusion arises; in particular we will
omit Ω, while we will indicate explicitly when quantities are defined on B.
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Once we have defined the model for both fluid and structure, we can introduce the
fictitious domain approach basically extending the fluid variables also in the region occupied
by the solid. Hence, we call u and p velocity and pressure defined on the whole Ω with

(6) u =

{
uf in Ωf

t

us in Ωs
t

, p =

{
pf in Ωf

t

ps in Ωs
t

.

Moreover, we take into account that the material velocity of the solid is equal to the velocity
of the fictitious fluid, that is

(7)
∂X

∂t
(s, t) = u(X(s, t), t) for s ∈ B;

this condition, analogous to (1), is now a constraint for the velocity u, describing its behavior
in Ωs

t . In variational terms, condition (7) is going to be enforced introducing a distributed
Lagrange multiplier. For this purpose, we consider a Hilbert space Λ and we define a
continuous bilinear form c : Λ× (H1(B))d → R satisfying the property

(8) c(µ,Z) = 0 ∀µ ∈ Λ ⇒ Z = 0.

There are several choices for the form c; in particular, we can choose c to be the duality
pairing between (H1(B))d and its dual Λ = ((H1(B))d)′

(9) c(µ,Y) = 〈µ,Y〉 ∀µ ∈ ((H1(B))d)′, ∀Y ∈ (H1(B))d

or, alternatively, we can set Λ = (H1(B))d and define c as the scalar product

(10) c(µ,Y) = (µ,Y)B + (∇sµ,∇s Y)B ∀µ,Y ∈ (H1(B))d.

At the end, we can write the variational formulation of our problem; before doing that,
we introduce the following notations

a(u,v) =

∫
Ω
ν ε(u) : ε(v) dx ν =

{
νf in Ωf

t

νs in Ωs
t

b(u,v,w) =
ρf
2

((u · ∇v,w)− (u · ∇w,v)) δρ = ρs − ρf .
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Problem 1. Given u0 ∈ (H1
0 (Ω))d and X0 : B −→ Ω, ∀t ∈ (0, T ), find (u(t), p(t)) ∈

(H1
0 (Ω))d × L2

0(Ω), X(t) ∈ (W 1,∞(B))d and λ(t) ∈ Λ, such that

ρf
∂

∂t
(u(t),v) + b(u(t),u(t),v) + a(u(t),v)

− (div v, p(t)) + c(λ(t),v(X(t))) = 0 ∀v ∈ (H1
0 (Ω))d(11a)

(div u(t), q) = 0 ∀q ∈ L2
0(Ω)(11b)

δρ

(
∂2X

∂t2
,Y

)
B

+ (P(F(s, t)),∇s Y)B − c(λ(t),Y) = 0 ∀Y ∈ (H1(B))d(11c)

c

(
µ,u(X(·, t), t)− ∂X

∂t
(t)

)
= 0 ∀µ ∈ Λ(11d)

u(x, 0) = u0(x) ∀x ∈ Ω(11e)
X(s, 0) = X0(s) ∀s ∈ B(11f)

In [9], it was shown that a linearized version of Problem 1 admits a unique solution. See
also [8] for a review on the state of the art about this problem.

3. Time advancing scheme and associated stationary problem

In this section we recall the formulation of our problem when it is discretized in time via
backward finite differences; in particular, we are going to see that at each time step, the
solution of the problem is reduced to a stationary saddle point problem.

Let us consider a positive integer N and partition the time interval [0, T ] into N equal
parts so that each node corresponds to tn = n∆t, for n = 0, . . . , N , where ∆t = T/N is the
time step size. Hence, the approximation of the derivatives reads as follows

(12) ∂tv(tn+1) ≈ vn+1 − vn

∆t
, ∂ttv(tn+1) ≈ vn+1 − 2vn + vn−1

∆t2
.

As a consequence, the time discretized version of Problem 1 can be written in the following
manner.
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Problem 2. Given u0 ∈ (H1
0 (Ω))d and X0 ∈ (W 1,∞(B))d, for n = 1, . . . , N find (un, pn) ∈

(H1
0 (Ω))d × L2

0(Ω), Xn ∈ (H1(B))d, and λn ∈ Λ, such that

ρf

(
un+1 − un

∆t
,v

)
+ b(un,un+1,v) + a(un+1,v)

− (div v, pn+1) + c(λn+1,v(Xn)) = 0 ∀v ∈ (H1
0 (Ω))d(13a)

(div un+1, q) = 0 ∀q ∈ L2
0(Ω)(13b)

δρ

(
Xn+1 − 2Xn + Xn−1

∆t2
,Y

)
B

+ (P(Fn+1),∇s Y)B

− c(λn+1,Y) = 0 ∀Y ∈ (H1(B))d(13c)

c

(
µ,un+1(Xn)− Xn+1 −Xn

∆t

)
= 0 ∀µ ∈ Λ(13d)

where we can define X−1 via an equation of the following type

X0 −X−1

∆t
= us0 in B.

As we were saying before, at each time step of Problem 2, we solve a saddle point problem
which is independent of time: we refer to [7] for its analysis, in terms of inf-sup conditions
and convergence.

In order to present the structure of the stationary problem we are going to solve, we first
reduce our discussion to the case of a linear model of the Piola-Kirchhoff stress tensor, that
we define as P(F) = κF = κ∇s X. Therefore, we get the following saddle point problem.

Problem 3. Let X ∈ (W 1,∞(B))d be invertible with Lipschitz inverse and u ∈ (H1
0 (Ω))d

such that div u = 0. Given f ∈ (L2(Ω))d, g ∈ (L2(B))d and d ∈ (L2(B))d, find (u, p) ∈
(H1

0 (Ω))d × L2
0(Ω), X ∈ (H1(B))d and λ ∈ Λ, such that

af (u,v)− (div v, p) + c(λ,v(X)) = (f ,v) ∀v ∈ (H1
0 (Ω))d(14a)

(div u, q) = 0 ∀q ∈ L2
0(Ω)(14b)

as(X,Y)− c(λ,Y) = (g,Y) ∀Y ∈ (H1(B))d(14c)

c(µ,u(X)−X) = c(µ,d) ∀µ ∈ Λ(14d)

Particularly, the bilinear forms af and as are defined as

af (u,v) = α(u,v) + a(u,v) + b(u,u,v) ∀u,v ∈ (H1
0 (Ω))d

as(X,Y) = β(X,Y)B + γ(∇s X,∇s Y)B ∀X,Y ∈ (H1(B))d,
(15)
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where X = Xn, u = un in the nonlinear terms. Problem 3 is obtained from Problem 2
considering a single step and taking

u = un+1, p = pn+1, X =
Xn+1

∆t
, λ = λn+1

f =
ρf
∆t

un

g =
δρ

∆t2
(2Xn −Xn−1)

d = − 1

∆t
Xn

α =
ρf
∆t

, β =
δρ

∆t
, γ = κ∆t.

4. Finite element discretization of the stationary problem

In order to discretize Problem 3 using finite elements, we need to consider four finite
dimensional subspaces; in detail Vh ⊂ (H1

0 (Ω))d, Qh ⊂ L2
0(Ω), Sh ⊂ (H1(B))d and Λh ⊂ Λ,

where the spaces for velocity and pressure, Vh and Qh have to satisfy the inf-sup conditions
for the Stokes problem. In addition, we reduce the discussion to the case when the two spaces
on the solid, Sh and Λh, coincide.

We observe that if c is defined as the duality pairing between (H1(B))d and its dual,
we can identify it with the scalar product in (L2(B))d providing that Λh is included in
(L2(B))d:

(16) c(µ,Y) = (µ,Y)B ∀µ ∈ Λh,∀Y ∈ Sh.

On the other hand, if c is defined as the inner product of (H1(B))d, no modification is
necessary.

These finite dimensional spaces are defined making use of two meshes for the spatial
discretization of the domains Ω and B: we denote by Th the spatial discretization of Ω
characterized by the size hT , while Sh is the mesh we use for B, with size hS .

In this setting, we are now able to state the finite element version of Problem 3 whose
well-posedness has been discussed in [7] and [8].

Problem 4. Let X ∈ (W 1,∞(B))d be invertible with Lipschitz inverse and u ∈ (H1
0 (Ω))d

such that div u = 0. Given f ∈ (L2(Ω))d, g ∈ (L2(B))d and d ∈ (L2(B))d, find (uh, ph) ∈
Vh ×Qh, Xh ∈ Sh and λh ∈ Λh, such that

af (uh,vh)− (div vh, ph) + c(λh,vh(X)) = (f ,vh) ∀vh ∈ Vh(17a)
(div uh, qh) = 0 ∀qh ∈ Qh(17b)
as(Xh,Yh)− c(λh,Yh) = (g,Yh) ∀Yh ∈ Sh(17c)

c(µh,uh(X)−Xh) = c(µh,d) ∀µh ∈ Λh.(17d)
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Moreover, this can be rewritten in matrix form as

(18)


Af B> 0 C>f

B 0 0 0

0 0 As −C>s
Cf 0 −Cs 0




u

p

X

λ

 =


f

0

g

d

 ,
where the blocks are defined using the basis functions of Vh, Qh, Sh and Λh: indeed,
denoting the basis functions respectively with φ, ψ, χ and ζ, we get

(Af )ij = af (φj ,φi)

Bki = −(divφi, ψk)

(As)ij = as(χj ,χi)

(Cf )`j = c(ζ`,φj(X))

(Cs)`j = c(ζ`,χj).

5. Assembling the interface matrix Cf

The Cf block of the stiffness matrix of the finite element discretization (18) plays a crucial
role in our method because it represents the interaction between the fluid and the structure.
In particular, since we use a fictitious domain approach, the fluid domain is extended in
order to include also the region occupied by the solid, hence there is an overlap of the fluid
mesh with the solid mesh mapped into fluid domain.

The matrix Cf is associated with the bilinear form c(µh,vh(X)), which can be the scalar
product of (L2(B))d or (H1(B))d. Therefore, we have to compute an integral over the solid
reference domain B that involves µh ∈ Λh, defined on B, and vh ∈ Vh defined on the whole
domain Ω.

X
_

Figure 1. Mapping of a solid element into the fluid mesh.

In Figure 1, we show a portion of the meshes Sh of B and Th of Ω. In the picture we
highlight in gray a particular triangle T ∈ Sh and the corresponding element X(T ) immersed
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(a) (b) (c)

Figure 2. A graphical example for the two approaches proposed for the
assembling of the interface matrix. The cyan mesh is related to the velocity
while the big triangle is a mapped element in its actual position. (a) The
support of the fluid basis function associated with the black-starred point
is represented in yellow. In particular, it is clear that only a portion of the
support is included in the solid element. (b) The mapped solid triangle is
partitioned into sub-polygons: each of them is related to a single velocity
element. If a polygon is not already a triangle, it is triangulated (pink lines).
(c) Mapped nodes for a Gauss quadrature rule with order two.

in Ω. Basically, to map the mesh Sh of B into Ω, we simply apply the transformation X
to the nodes, keeping linear the edges connecting them. As a consequence, how to manage
the geometrical aspects becomes really important because we have to integrate over Sh the
velocity shape functions defined on Th, combined with X. In doing that, we have to take
into account the position occupied by X(Sh), see Figure 2a for an example of mismatch
between the supports of fluid and mapped solid basis functions: indeed, the support of the
fluid basis function under consideration, indicated in yellow, only partially matches the blue
mapped solid triangle. We also notice that this situation does not concern the assembling
of Cs, also defined through c, but involving the spaces Sh and Λh both defined on B.

In this section, we restrict our discussion to the case d = 2 with triangular meshes in order
to present two different approaches for the assembling procedure of Cf : the first approach
depends on the computation of the intersection between the velocity mesh and the mesh of
B mapped into Ωs, while the second one skips these geometric computations.

At this point, we introduce the discrete version of the two choices for the bilinear form
c with respect to the mesh Sh; if c is defined like in (16), we have

(19) ch(µh,vh(X)) =

∫
Sh
µh · vh(X) ds =

∑
Ts∈Sh

∫
Ts

µh · vh(X) ds
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otherwise, if the definition is the one in (10), we can write

(20)

ch(µh,vh(X)) =

∫
Sh
µh · vh(X) + ∇sµh : ∇s vh(X) ds

=
∑
Ts∈Sh

∫
Ts

µh · vh(X) + ∇sµh : ∇s vh(X) ds.

In the next subsections, we expand these two definitions, denoting by {(pk, ωk)}Kk=1 nodes
and weights respectively of the quadrature rule under consideration; |T | denotes the area
of a triangle T . We remark that ∇s vh(X) is the gradient of a composite function, indeed
we have to compute the gradient with respect to s of the velocity vh applied to the map
X, defined on B.

5.1. Assembling with mesh intersection. If we want to perform an exact computation
of the integrals in (19) and (20), we need to use a composite rule on the intersection of the
fluid and solid meshes.

The aim of computing the intersection is to obtain a new triangulation for the structure,
finer than the original one, such that each new element is immersed in (i.e. interacts with)
a single fluid element: in this way, all the basis functions involved for the integration (both
solid and fluid) are supported in the structure element under consideration. With this
procedure, we can obtain an accurate computation of the interaction because, thanks to
the composite quadrature rule defined, we can take fully into account the contribution given
by the objects involved.

In particular, the computation of the intersection has to be made testing each actual solid
element X(Ts) with each fluid element Tf ∈ Th ; the intersection could be still a triangle or
a general polygon: in the first case, we have already a new element of the finer triangulation
while, in the latter one, we compute a sub-triangulation connecting the barycenter with
the vertices of the polygon. In particular, we denote by {Pj}Jj=1 the set of the resulting
polygons for each Ts and by {Ti}

Ij
i=1 the elements of the new triangulation of Pj . Therefore,

the numerical version of the integrals in (19) is given by

(21)

∫
Ts

µh · vh(X) ds =

J∑
j=1

∫
Pj

µh · vh(X) ds =

J∑
j=1

Ij∑
i=1

∫
Ti

µh · vh(X) ds

=

J∑
j=1

Ij∑
i=1

|Ti|
K∑
k=1

ωkµh(pk) · vh(X(pk)),
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while for (20), we have

(22)

∫
Ts

µh · vh(X) + ∇sµh : ∇s vh(X) ds

=
J∑
j=1

∫
Pj

µh · vh(X) + ∇sµh : ∇s vh(X) ds

=
J∑
j=1

Ij∑
i=1

∫
Ti

µh · vh(X) + ∇sµh : ∇s vh(X) ds

=

J∑
j=1

Ij∑
i=1

|Ti|
K∑
k=1

ωk
[
µh(pk) · vh(X(pk)) + ∇sµh(pk) : ∇s vh(X(pk))

]
.

Algorithm 1 summarizes the steps of the procedure that is also graphically represented
in Figure 2b where purple lines denote the polygons resulting from the intersection between
the blue solid element and the cyan velocity triangles; pink lines denote the triangulation
constructed using the barycenter.

Algorithm 1 Assembling Cf with mesh intersection

{Tf}f=1,...,NF
= elements of the fluid mesh

{Ts}s=1,...,NS
= elements of the reference solid mesh

Compute mesh intersection {Tf}f ∩ {X(Ts)}s:
each X(Ts) is partitioned into J ≥ 1 polygons {Pj}j=1,...,J

associated with J fluid elements {Tf,j}j=1,...,J , i.e. Pj ↔ Tf,j

for {Ts}s=1,...,NS
do

for {Pj}j=1,...,J do
if Pj is not a triangle then

Triangulate Pj into {Ti}i=1,...,Ij

end
else

Ij = 1 and T1 = Pj
end
for {Ti}i=1,...,Ij do

Integrate using the basis functions related to Ts and Tf,j
Load contribution to the global matrix

end
end

end
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5.2. Assembling without mesh intersection. A cheaper approach consists in directly
integrating on each element of the structure discretization, therefore the first step consists
in computing the quadrature nodes of the element under consideration accordingly to the
chosen quadrature rule. At this point, the evaluation of the solid basis functions is a trivial
operation.

On the other hand, for the evaluation of the shape functions related to the velocity, we
must pay attention because the quadrature nodes could belong to different fluid elements:
for this reason, it becomes necessary to understand whose fluid triangle each of the quad-
rature points belongs to. In the case of triangular meshes, this operation can be performed
computing the barycentric coordinates of the nodes with respect to all fluid elements. Once
this is done, at each quadrature point we can evaluate the fluid functions related to the
element that contains it and then integrate. We emphasize that this operation introduces an
additional source of error because we are evaluating the fluid basis functions at a quadrature
node assuming that at the other ones they are not supported.

In this case, the quadrature over Ts for (19) is given by

(23)
∫
Ts

µh · vh(X) ds = |Ts|
K∑
k=1

ωkµh(pk) · vh(X(pk));

conversely, for (20), we have

(24)

∫
Ts

µh · vh(X) + ∇sµh : ∇s vh(X) ds

= |Ts|
K∑
k=1

ωk
[
µh(pk) · vh(X(pk)) + ∇sµh(pk) : ∇s vh(X(pk))

]
.

A clarifying example is in Figure 2c, where to fix ideas, we represent the coupling without
intersection is the case of a Gaussian quadrature rule with three nodes. Here, if we look
at the three points, the basis functions of the related fluid elements are supported also in
fluid triangles that we are not considering for this computation. All the steps are reported
in Algorithm 2.

5.3. Other geometries and three-dimensional case. It is important to notice that
the procedures just described for two dimensional simplices may be also valid for other
geometries, such as quadrilateral meshes. Moreover, we can also extend the same ideas
to the three dimensional case. For instance, if we consider simplicial meshes in the three-
dimensional space, we have to deal with tetrahedra. From the theoretical point of view,
our method still works and the two algorithms regarding the assembling techniques for the
interface matrix do not change; on the other hand, the computation of the intersection of
three dimensional polyhedra is a non-trivial operation and needs the support of specific
geometric libraries. For the non intersection case, the use of barycentric coordinates for
detecting where the quadrature nodes are placed in the fluid mesh is still a valid procedure.
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Algorithm 2 Assembling the Cf matrix block without mesh intersection

{Tf}f=1,...,NF
= elements of the fluid mesh

{Ts}s=1,...,NS
= elements of the reference solid mesh

for {Ts}s=1,...,NS
do

Compute K quadrature nodes p1, . . . ,pK in Ts accordingly to the rule chosen
Evaluate solid basis functions
Find the fluid element containing each mapped quadrature point: X(pk)↔ Tf,k with
k = 1, . . . ,K
for {Tf,k}k=1,...,K do

Evaluate the fluid basis functions in X(pk) and integrate over Ts
Load contribution to the global matrix

end
end

6. Numerical tests

6.1. Model problem. To study how the two approaches presented above affect the con-
vergence of our method, we perform several numerical tests on a two dimensional stationary
problem, that turns out to be a simplified version of the problem presented in Problem 3.

Problem 5. Let X ∈ (W 1,∞(B))2 be invertible with Lipschitz inverse. Given f ∈ (L2(Ω))2,
g ∈ (L2(B))2 and d ∈ (L2(B))2, find (u, p) ∈ (H1

0 (Ω))2 × L2
0(Ω), X ∈ (H1(B))2 and

λ ∈ (H1(B))2, such that

af (u,v)− (div v, p) + c(λ,v(X)) = (f ,v) ∀v ∈ (H1
0 (Ω))2(25a)

(div u, q) = 0 ∀q ∈ L2
0(Ω)(25b)

as(X,Y)− c(λ,Y) = (g,Y) ∀Y ∈ (H1(B))2(25c)

c(µ,u(X)−X) = c(µ,d) ∀µ ∈ (H1(B))2(25d)

where the bilinear forms are defined as
af (u,v) = (∇u,∇v)

as(X,Y) = (∇s X,∇s Y)B

c(µ,Y) = (∇sµ,∇s Y)B + (µ,Y)B

For each of our eight tests, we first select analytical solutions not belonging to the finite
element spaces chosen for the approximation, and then we compute the right hand sides as
follows

f = −∆u +∇ p+ c(λ,v)

g = −∆X− λ+ g∂B

d = u(X)−X

where g∂B is the boundary term we obtain integrating by parts the equation of the solid
without considering the multiplier; for this reason it is related with the normal derivative
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of X on ∂B
as(X,Y) = (∇s X,∇s Y)B = (−∆X,Y)B + (∇s X · ns,Y)∂B.

For the definition of the datum f , we emphasize again that the contribution given by the
multiplier is weakly imposed only on the solid domain. Consequently, exploiting once again
the immersion of the solid in the fluid, in order to assemble this term, we have still to use
the mesh intersection to ensure an optimal computation of the datum.

The first six cases are characterized by the fact that X is set to be the identity, hence the
reference and the actual solid domain coincide; moreover in Tests 5 and 6 we consider the
case of discontinuous pressure with the discontinuity matching both the fluid triangulation
and the boundary of the structure and with non-matching interface, respectively. On the
other hand, for the last two tests, we consider the case of a non trivial mapping X with two
different bodies. Each test is performed choosing the Stokes pair P1−iso−P2/P1 introduced
by Bercovier and Pironneau in [2] and its enhanced version P1− iso−P2/P1 +P0 discussed
in [4], while for the approximation of both the solid variables, we choose piecewise linear
elements P1.

6.2. Bercovier-Pironneau element. The Bercovier-Pironneau element is a popular choice
in this field of study because it is considered as a cheaper version of the Hood-Taylor ele-
ment: they share the same set of degrees of freedom, but the Bercovier-Pironneau involves
linear shape functions also for the velocity discretization, hence, for this reason it is a
low-order choice.

The peculiarity of a choice of this type concerns with the discretization of the domain and
the need to work with two different meshes for velocity and pressure: indeed, each pressure
element is a macro element containing the four velocity triangles obtained by connecting
the middle points. Therefore, we can write Vh and Qh as

(26)
Vh = {v ∈ (H1

0 (Ω))2 : v|T ∈ (P1(T ))2 ∀T ∈ Th/2}
Qh = {q ∈ L2

0(Ω) : q|T ∈ P1(T ) ∀T ∈ Th}.
The enhanced version with discontinuous pressure has been introduced because it guar-

antees a local mass conservation with the average of the divergence equal to zero in each
element; in this case, the pressure space is defined as

(27) Qh = {q ∈ L2
0(Ω) : q = q1 + q0, q1 ∈ H1(Ω), q1|T ∈ P1(T ), q0|T ∈ P0(T ) ∀T ∈ Th}.

The use of two different meshes for velocity and pressure has consequences also in the
assembling of the interface matrix Cf : since it is defined from c(λh,uh(X)), we have to
couple the solid mesh Sh with the one related to the velocity Th/2.

6.3. Mesh generation. For the fluid domain discretization, we use uniform meshes. In
particular, in the case of P1 − iso − P2/P1 + P0 elements, we need to pay attention to
corner triangles, i.e. triangles with two edges placed on the boundary, because they produce
wrong approximations due to the sensitivity to the boundary conditions (the phenomenon
is analyzed in [4]): this situation is corrected via diagonal exchange. On the other hand, for
the structure, we work with both uniform and unstructured grids.
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All the meshes, satisfying the shape regularity property, are generated on the unit square
[0, 1]2 and then mapped into Ω and B. To obtain unstructured meshes, we used the Gmsh
finite element mesh generator [18].

Some examples are presented in Figure 3, while in Table 1, we report the number of
degrees of freedom of each unknown in dependence of the chosen discrete spaces and meshes.

DOFs uh DOFs ph DOFs p0
h DOFs Xh, λh DOFs Xuns

h , λunsh

2,178 289 801 162 232
8,450 1,089 3,137 578 742
33,282 4,225 12,417 2,178 2,788
132,028 16,641 49,409 8,450 11,018
526,338 66,049 197,121 33,282 43,734
2,101,250 263,169 787,457 132,028 174,316

Table 1. Mesh parameters and degrees of freedom related to the chosen
discrete spaces. The last column regards the solid discretization with un-
structured mesh, while the others are related to uniform meshes. With p0

h,
we denote the pressure approximation with P1 + P0 elements.
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tured

Figure 3. Some examples of meshes. (a) and (b) are used for the fluid
discretization and, in particular, in (b) we can see the correction of the
corner triangles we need when we work with the P1 + P0 approximation
of the pressure. In (c) and (d), we have two meshes used for the structure.
When we work with perfectly matching meshes, we use the type in (a) for
both the domains.

6.4. Mesh intersection in Python. All the tests has been performed with Python 3.8
scripts written specifically for this purpose. We focus our attention on the libraries used for
the geometric computations.
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In Algorithms 1 and 2, we denoted by NF and NS the number of elements of the two
meshes (fluid and solid respectively), hence the number of the intersections to be tested is
NS ×NF , which may become large when working with very fine meshes. In order to avoid
useless computations, we can check in advance if two elements have non-empty intersection
making use of the bounding box technique: if the bounding boxes are disjoint, the intersec-
tion of the two elements under consideration is empty and therefore we can move on and
examine another pair of elements. These preliminary tests can be done using a tree-search
algorithm: in our Python code, this procedure is based on the Rtree library.

To actually compute the intersection between two triangles, the Shapely.geometry li-
brary is very useful because it can manage objects of type polygon that allow us to compute
and represent the intersection in an easy way: it is enough to construct two polygon ob-
jects to represent the two triangles under consideration and then use the intersection()
method to obtain the resulting polygon.

On the other hand, if we assemble Cf without intersection, we do not need particular
tools: if we consider a solid triangle with its quadrature nodes, we can simply convert
them with respect to the barycentric coordinates system related to each fluid element and
understand in which one they are placed.

The geometric configurations of our tests are summarized in Figure 4: we can see the
reciprocal position of fluid and solid meshes in the case of coarse spatial discretizations.

6.5. Quadrature rules for ch. Now we focus our attention on the quadrature rules used
for the assembling of the interface matrix: as mentioned above, we set c as in (10). With
the chosen finite element spaces, the basis functions both for the velocity and the Lagrange
multiplier are piecewise linear and this implies that we need to compute integrals with sec-
ond order precision for the L2 contributions and with first order precision for the gradients
terms. In particular, in order to have exact computations, we used Gauss quadrature rules
with the required accuracy for both approaches. Furthermore, in order to better understand
the behavior of the system when the interface matrix is assembled without mesh intersec-
tion, we implemented, only for this case, also a Gauss quadrature rule with third order
precision.

For the sake of precision, we report the definition of these formulas on the reference
triangle T̂ .

Definition 1 (Gauss rule, order 1). A polynomial of degree one f can be integrated exactly
by the following one-point formula

(28)
∫
T̂
f(x) dx ≈ |T̂ | f(xT̂ )

where xT̂ is the barycenter of T̂ .

Definition 2 (Gauss rule, order 2). A polynomial of degree two f can be integrated exactly
by the following three-points formula

(29)
∫
T̂
f(x) dx ≈ |T̂ |

3

3∑
k=1

f
(
x(k)

)
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(h) Test 8

Figure 4. All the geometric configurations of our tests with coarse meshes.
In particular, for the first six tests, we have that the reference and actual con-
figuration of the solid coincide. We point out that the fluid mesh represented
is the one related to the velocity. Moreover, each geometric configuration re-
mains unchanged when we refine the two meshes.

where the quadrature nodes, represented in barycentric coordinates, are x(1) = (2/3, 1/6, 1/6)
and its permutation.
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Definition 3 (Gauss rule, order 3). A polynomial of degree three f can be integrated exactly
by the following four-points formula

(30)
∫
T̂
f(x) dx ≈ |T̂ |

(
25

48

3∑
k=1

f
(
x(k)

)
− 9

16
f(xT̂ )

)
where the quadrature nodes, represented in barycentric coordinates, are x(1) = (3/5, 1/5, 1/5)

with its permutation and the barycenter xT̂ of T̂ .

6.6. Test 1. Sanity check. Let us consider Problem 5 on the fluid square domain Ω =
[−2, 2]2 and with B = Ωs = [−1, 1]2. This assumption implies that the initial datum X is
simply the identity, hence d = 0. We compute the right hand sides f , g, and d in order to
obtain the following solutions:

(31)

u(x, y) = curl
(
(4− x2)2(4− y2)2

)
u|∂Ω = 0

p(x, y) = 150 sin(x)

X(x, y) = u(x, y)

λ(x, y) =
(
ex, ey

)
.

In particular, we discretize both domains using perfectly matching uniform right-oriented
meshes (Figures 3a and 3b): we can see that the two methods for the assembling of the
interface matrix are equivalent, indeed, the convergence rates confirm what expected. The
errors and the convergence rates are collected in Tables 2, 3, 4, 5: in particular in the first
two tables, we have the data related to the approximation with P1 − iso − P2/P1/P1/P1

element, while in Table 4 and 5, we have the results related to the P1 − iso − P2/P1 +
P0/P1/P1 approximation.

In Subsection 6.2, we discussed the main features of the Bercovier-Pironneau element,
which is a low order Stokes pair. Therefore, we expect that the errors ‖p− ph‖0, ‖u−uh‖1
decay with order one, while ‖u − uh‖0 decays with order two. Moreover, since for both
displacement and multiplier we use P1 elements, we expect that they converge with order
two in the L2 norm and with order one in the H1 norm. From the results, we can see
that, in the case of the classical Bercovier-Pironneau element, we get a superconvergence
for pressure and Lagrange multiplier.

6.7. Test 2. We consider the same problem as in Test 1, but changing the meshes: we
discretize the fluid domain with a right-oriented uniform mesh (Figures 3a and 3b), while
the solid domain is discretized with a left-oriented uniform mesh (Figure 3c).

In this test, we consider the case of meshes with coincident edges to make a first com-
parison between the methods in a situation where the intersection of the meshes does not
have a complex geometry. From Figures 5 and 6, we can, however, already notice that the
convergence rates of the method without intersection with quadrature rule of order two
are lower than the convergence rates of the method with intersection. On the other hand,
the increase of the quadrature order for the method without intersection produces in this
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Errors and convergence rates for Test 1 • P1 − iso− P2/P1/P1/P1
hT ‖p− ph‖0 ‖u− uh‖0 ‖u− uh‖1

Error Rate Error Rate Error Rate
Coupling with mesh intersection

1/4 2.102e-02 - 9.622e-03 - 7.684e-02 -
1/8 6.251e-03 1.75 2.408e-03 2.00 3.834e-02 1.00
1/16 1.977e-03 1.66 6.017e-04 2.00 1.915e-02 1.00
1/32 6.546e-04 1.59 1.504e-04 2.00 9.572e-03 1.00
1/64 2.233e-04 1.55 3.758e-05 2.00 4.785e-03 1.00
1/128 7.745e-05 1.53 9.394e-06 2.00 2.392e-03 1.00

Coupling without mesh intersection, quad. rule of order 2
1/4 2.102e-02 - 9.622e-03 - 7.684e-02 -
1/8 6.251e-03 1.75 2.408e-03 2.00 3.834e-02 1.00
1/16 1.977e-03 1.66 6.017e-04 2.00 1.915e-02 1.00
1/32 6.546e-04 1.59 1.504e-04 2.00 9.572e-03 1.00
1/64 2.233e-04 1.55 3.758e-05 2.00 4.785e-03 1.00
1/128 7.745e-05 1.53 9.394e-06 2.00 2.392e-03 1.00

Coupling without mesh intersection, quad. rule of order 3
1/4 2.102e-02 - 9.622e-03 - 7.684e-02 -
1/8 6.251e-03 1.75 2.408e-03 2.00 3.834e-02 1.00
1/16 1.977e-03 1.66 6.017e-04 2.00 1.915e-02 1.00
1/32 6.546e-04 1.59 1.504e-04 2.00 9.572e-03 1.00
1/64 2.233e-04 1.55 3.758e-05 2.00 4.785e-03 1.00
1/128 7.745e-05 1.53 9.394e-06 2.00 2.392e-03 1.00

Table 2. Errors and convergence rates for the fluid variables of Test 1
discretized with P1 − iso− P2/P1/P1/P1

case a significant improvement, almost reaching the good behavior of the method with
intersection.

6.8. Test 3. For this third test, we use again the solutions chosen in (31). On the other
hand, we set Ω = [−2, 2]2 and B = Ωs = [−0.62, 1.38]2 so that the interface of the solid does
not match with the fluid mesh, discretizing them with uniform meshes as before. The results
are reported in Figures 7 and 8. Thanks to the new positioning of the structure, without
matching boundaries, we get clearer results. The only method capable of ensuring good
convergence is the one that computes the intersection. In this case, the increase in precision
of the quadrature rule used when the intersection is not calculated does not produce any
improvement.



21

Errors and convergence rates for Test 1 • P1 − iso− P2/P1/P1/P1
hS ‖X−Xh‖0,B ‖X−Xh‖1,B ‖λ− λh‖0,B ‖λ− λh‖1,B

Error Rate Error Rate Error Rate Error Rate
Coupling with mesh intersection

1/8 8.011e-03 - 4.972e-02 - 1.908e-01 - 4.166e-01 -
1/16 2.011e-03 1.99 2.479e-02 1.00 4.786e-02 2.00 1.111e-01 1.91
1/32 5.032e-04 2.00 1.239e-02 1.00 1.197e-02 2.00 2.963e-02 1.91
1/64 1.258e-04 2.00 6.193e-03 1.00 2.991e-03 2.00 8.185e-03 1.86
1/128 3.146e-05 2.00 3.096e-03 1.00 7.476e-04 2.00 2.524e-03 1.70
1/256 7.864e-06 2.00 1.548e-03 1.00 1.869e-04 2.00 9.445e-04 1.42

Coupling without mesh intersection, quad. rule of order 2
1/8 8.011e-03 - 4.972e-02 - 1.908e-01 - 4.166e-01 -
1/16 2.011e-03 1.99 2.479e-02 1.00 4.786e-02 2.00 1.111e-01 1.91
1/32 5.032e-04 2.00 1.239e-02 1.00 1.197e-02 2.00 2.963e-02 1.91
1/64 1.258e-04 2.00 6.193e-03 1.00 2.991e-03 2.00 8.185e-03 1.86
1/128 3.146e-05 2.00 3.096e-03 1.00 7.476e-04 2.00 2.524e-03 1.70
1/256 7.864e-06 2.00 1.548e-03 1.00 1.869e-04 2.00 9.445e-04 1.42

Coupling without mesh intersection, quad. rule of order 3
1/8 8.011e-03 - 4.972e-02 - 1.908e-01 - 4.166e-01 -
1/16 2.011e-03 1.99 2.479e-02 1.00 4.786e-02 2.00 1.111e-01 1.91
1/32 5.032e-04 2.00 1.239e-02 1.00 1.197e-02 2.00 2.963e-02 1.91
1/64 1.258e-04 2.00 6.193e-03 1.00 2.991e-03 2.00 8.185e-03 1.86
1/128 3.146e-05 2.00 3.096e-03 1.00 7.476e-04 2.00 2.524e-03 1.70
1/256 7.864e-06 2.00 1.548e-03 1.00 1.869e-04 2.00 9.445e-04 1.42

Table 3. Errors and convergence rates for the solid variables of Test 1
discretized with P1 − iso− P2/P1/P1/P1
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Figure 5. Convergence plots of Test 2 with P1 − iso− P2/P1/P1/P1
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Errors and convergence rates for Test 1 • P1 − iso− P2/P1 + P0/P1/P1
hT ‖p− ph‖0 ‖u− uh‖0 ‖u− uh‖1

Error Rate Error Rate Error Rate
Coupling with mesh intersection

1/4 7.981e-02 - 1.043e-02 - 8.042e-02 -
1/8 3.939e-02 1.02 2.617e-03 1.99 4.017e-02 1.00
1/16 1.957e-02 1.01 6.549e-04 2.00 2.008e-02 1.00
1/32 9.749e-03 1.00 1.637e-04 2.00 1.004e-02 1.00
1/64 4.866e-03 1.00 4.093e-05 2.00 5.018e-03 1.00
1/128 2.431e-03 1.00 1.023e-05 2.00 2.509e-03 1.00

Coupling without mesh intersection, quad. rule of order 2
1/4 7.981e-02 - 1.043e-02 - 8.042e-02 -
1/8 3.939e-02 1.02 2.617e-03 1.99 4.017e-02 1.00
1/16 1.957e-02 1.01 6.549e-04 2.00 2.008e-02 1.00
1/32 9.749e-03 1.00 1.637e-04 2.00 1.004e-02 1.00
1/64 4.866e-03 1.00 4.093e-05 2.00 5.018e-03 1.00
1/128 2.431e-03 1.00 1.023e-05 2.00 2.509e-03 1.00

Coupling without mesh intersection, quad. rule of order 3
1/4 7.981e-02 - 1.043e-02 - 8.042e-02 -
1/8 3.939e-02 1.02 2.617e-03 1.99 4.017e-02 1.00
1/16 1.957e-02 1.01 6.549e-04 2.00 2.008e-02 1.00
1/32 9.749e-03 1.00 1.637e-04 2.00 1.004e-02 1.00
1/64 4.866e-03 1.00 4.093e-05 2.00 5.018e-03 1.00
1/128 2.431e-03 1.00 1.023e-05 2.00 2.509e-03 1.00

Table 4. Errors and convergence rates for the fluid variables of Test 1
discretized with P1 − iso− P2/P1 + P0/P1/P1
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Figure 6. Convergence plots of Test 2 with P1− iso−P2/P1 +P0/P1/P1
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Errors and convergence rates for Test 1 • P1 − iso− P2/P1 + P0/P1/P1
hS ‖X−Xh‖0,B ‖X−Xh‖1,B ‖λ− λh‖0,B ‖λ− λh‖1,B

Error Rate Error Rate Error Rate Error Rate
Coupling with mesh intersection

1/8 8.854e-03 - 5.239e-02 - 2.300e-01 - 1.861e+00 -
1/16 2.228e-03 1.99 2.616e-02 1.00 5.802e-02 1.99 9.338e-01 0.99
1/32 5.578e-04 2.00 1.308e-02 1.00 1.453e-02 2.00 4.672e-01 1.00
1/64 1.395e-04 2.00 6.539e-03 1.00 3.632e-03 2.00 2.336e-01 1.00
1/128 3.487e-05 2.00 3.269e-03 1.00 9.078e-04 2.00 1.168e-01 1.00
1/256 8.718e-06 2.00 1.635e-03 1.00 2.269e-04 2.00 5.840e-02 1.00

Coupling without mesh intersection, quad. rule of order 2
1/8 8.854e-03 - 5.239e-02 - 2.300e-01 - 1.861e+00 -
1/16 2.228e-03 1.99 2.616e-02 1.00 5.802e-02 1.99 9.338e-01 0.99
1/32 5.578e-04 2.00 1.308e-02 1.00 1.453e-02 2.00 4.672e-01 1.00
1/64 1.395e-04 2.00 6.539e-03 1.00 3.632e-03 2.00 2.336e-01 1.00
1/128 3.487e-05 2.00 3.269e-03 1.00 9.078e-04 2.00 1.168e-01 1.00
1/256 8.718e-06 2.00 1.635e-03 1.00 2.269e-04 2.00 5.840e-02 1.00

Coupling without mesh intersection, quad. rule of order 3
1/8 8.854e-03 - 5.239e-02 - 2.300e-01 - 1.861e+00 -
1/16 2.228e-03 1.99 2.616e-02 1.00 5.802e-02 1.99 9.338e-01 0.99
1/32 5.578e-04 2.00 1.308e-02 1.00 1.453e-02 2.00 4.672e-01 1.00
1/64 1.395e-04 2.00 6.539e-03 1.00 3.632e-03 2.00 2.336e-01 1.00
1/128 3.487e-05 2.00 3.269e-03 1.00 9.078e-04 2.00 1.168e-01 1.00
1/256 8.718e-06 2.00 1.635e-03 1.00 2.269e-04 2.00 5.840e-02 1.00

Table 5. Errors and convergence rates for the solid variables of Test 1
discretized with P1 − iso− P2/P1 + P0/P1/P1
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Figure 7. Convergence plots of Test 3 with P1 − iso− P2/P1/P1/P1
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Figure 8. Convergence plots of Test 3 with P1− iso−P2/P1 +P0/P1/P1

6.9. Test 4. In the same setting of the previous test, we partition the solid domain making
use of an unstructured grid (Figure 3d). The use of this type of mesh for the discretization
of the immersed body places us in an even more general setting. Figures 9 and 10 show that
the bad performances seen in the previous tests for the methods without intersection are
amplified; in the case of the pressure, the non-intersection methods perform better when
we use discontinuous elements. Furthermore, if in the previous tests ‖λ− λh‖1,B showed a
convergence rate higher than 1.5, this does not happen now, settling around 1.
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Figure 9. Convergence plots of Test 4 with P1 − iso− P2/P1/P1/P1
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Figure 10. Convergence plots of Test 4 with P1− iso−P2/P1 +P0/P1/P1

6.10. Test 5. The configuration of this test is the same we chose for Test 1, but, in this
case, we consider a pressure which is discontinuous on ∂Ωs. We assume that Ω = [−2, 2]2

and B = Ωs = [−1, 1]2: as before, for the fluid domain we choose a right-uniform mesh,
while for the structure a left-uniform one. The fact that the reference and the actual solid
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domain coincide implies that X = IB. We compute the right hand sides f , g in order to
obtain the following solutions:

(32)

u(x, y) = curl
(
(4− x2)2(4− y2)2

)
u|∂Ω = 0

p(x, y) =

{
150 sin(x)− 50

3 in Ωf

150 sin(x) + 50 in Ωs = B.
X(x, y) = u(x, y)

λ(x, y) =
(
ex, ey

)
.

Here, the choice of p implies that we have to introduce a new weak term in the definition
of the right hand side f taking into account the discontinuity. Indeed, we have∫

Ω
p div v dx =

∫
Ωs

v · ∇ pdx−
∫
∂Ωs

(v · ns) pdA +

∫
ΩrΩs

v · ∇ p dx−
∫
∂Ωs

(v · nf ) p dA;

therefore, in order to compute the boundary integrals combining ∂Ωs with the basis for
Vh, we have to take care of the immersion of the solid boundary in the fluid mesh. We
particularly emphasize that we are in the situation where the discontinuity of the pressure
not only matches the interface, but also the velocity mesh. In this situation, we can see how
the choice of element for pressure affects the convergence of all the variables. As expected
and presented in [4], the enhanced space P1 +P0 allows us to reach the optimal convergence
without presenting the Gibbs phenomenon that we get using the classical P1 pressure.

Regarding the computation of the intersection, we can see again that avoiding this pro-
cedure we do not obtain the optimal convergence rate. In particular, we can see that the
behavior is similar to the one seen in the first test. The results are collected in Figures 11
and 12.
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Figure 11. Convergence plots of Test 5 with P1 − iso− P2/P1/P1/P1

6.11. Test 6. We consider again a discontinuous pressure on the boundary of the structure
but in the case where the fluid triangulation does not match it: for this reason, we choose
B = Ωs = [−π/4, π/4]2 and we discretize it with a uniform left mesh. Our choices for Ω and
its discretization remain unchanged. We compute the right hand sides f , g, and d in order
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Figure 12. Convergence plots of Test 5 with P1− iso−P2/P1 +P0/P1/P1

to obtain the following solutions:

(33)

u(x, y) = curl
(
(4− x2)2(4− y2)2

)
u|∂Ω = 0

p(x, y) =

{
150 sin(x) + 50π

2

4

(
π2

4 − 16
)−1 in Ωf

150 sin(x) + 50 in Ωs = B.
X(x, y) = u(x, y)

λ(x, y) =
(
ex, ey

)
.

Due to the non matching boundary with respect to the singularity, also the P1 +P0 choice
does not reach the optimal convergence rate presenting the Gibbs phenomenon. In this
case, as we can see in Figures 13 and 14, the non-computation of the mesh intersection does
not affect the fluid variables basically; on the other hand, for the solid ones, the behavior
changes drastically.
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Figure 13. Convergence plots of Test 6 with P1 − iso− P2/P1/P1/P1

6.12. Test 7, disk. At this point, we consider a situation where the initial map X is
not trivial: indeed, we consider as reference domain for the solid the square B = [−1, 1]2

(partitioned with a uniform left mesh), while the actual immersed body is the unit disk
Ωs = {x ∈ R2 : ‖x‖ ≤ 1}; hence we have

X(x, y) =

(
x

√
1− y2

2
, y

√
1− x2

2

)
.

On the other hand, the domain Ω is still the same as before, and the computations are
done in order to obtain as solutions the ones chosen in (31). In addition, since the map
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Figure 14. Convergence plots of Test 6 with P1− iso−P2/P1 +P0/P1/P1

X is nontrivial, d = u(X) − X 6= 0 and we have again to deal with the computation of
c(µ,u(X)) intersecting the two meshes as we do in order to compute f .

The substantial difference between this test and the previous ones is that the evaluation
of the solid basis functions is done after mapping back the nodes on the reference domain
B. Also in this case, the behavior observed previously is confirmed with the intersection
approach prevailing on the non-intersection one (see Figures 15 and 16).
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Figure 15. Convergence plots of Test 7 with P1 − iso− P2/P1/P1/P1
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Figure 16. Convergence plots of Test 7 with P1− iso−P2/P1 +P0/P1/P1

6.13. Test 8, square. This test is a variation of Test 2 and 3: we consider the same
geometry but in the case of a non trivial mapping. Indeed, the solid reference domain is
chosen to be the unit square B = [0, 1]2, while the actual body is an another square, precisely
Ωs = [−0.62, 1.38]2. We use again uniform meshes (right and left oriented respectively) for
both Ω = [−2, 2]2 and B. The initial mapping X is defined by

X(x, y) = (−0.62 + 2x, −0.62 + 2y),
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and the solutions are those presented in (31).
The results, shown in Figures 17 and 18, are in agreement with Test 7.
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Figure 17. Convergence plots of Test 8 with P1 − iso− P2/P1/P1/P1
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Figure 18. Convergence plots of Test 8 with P1− iso−P2/P1 +P0/P1/P1

7. Conclusions

In the opening sections of this paper, we recalled the formulation for fluid-structure
interaction problem introduced in [6]: this approach, born in the spirit of the fictitious
domain approach, is based on the use of a distributed Lagrange multiplier with the aim of
enforcing the motion condition.

In particular, the main contribution of this paper is given by the comparison of two ap-
proaches to be used for the assembling of the interface matrix between fluid and structure:
the first approach is based on the computation of the intersection between the solid and
the fluid meshes, while the second one consists in computing the entries of the matrix with
a direct integration on each solid element. Several numerical tests showed that the optimal
convergence rate is reached only when the intersection is computed. On the other hand,
when the intersection of the two meshes is not computed, the method is not fully perform-
ing and the increase of precision of the quadrature rule does not produce any significant
improvement.
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