
Noname manuscript No.
(will be inserted by the editor)

Two-objective robust optimisation with quantification and
propagation of uncertainties from surrogate model and
manufacturing process

Yongxing Wang · Hazim Hamad · Jochen

Voss · Harvey M. Thompson

Received: date / Accepted: date

Abstract A robust optimisation formulates the uncertainties of a physical system
into the objective functions and/or its constraints, and uncertainties are conse-
quently quantified at the same time as minimising the objectives, which therefore
provides a robust solution to the corresponding physical system. In this paper,
we present a general mathematical framework for data-driven robust optimisation
problems: first, the Gaussian Process Regression (GPR) method is used to create
a surrogate model, which allows us to analyse and quantify uncontrollable un-
certainties such as noise from the training dataset or finite/limited discrete data
points; then, the Polynomial Chaos Expansion (PCE) method is used to propa-
gate controllable uncertainties, such as a manufacturing tolerance, from the input
to the output and create a probabilistic model; finally, three robust optimisation
problems are formulated and solved with a detailed analysis of the results. The
proposed optimisation framework is implemented in open-source Python libraries
and assessed by validated dataset from a Polymerase Chain Reaction (PCR) ther-
mal flow system with consideration of uncertainties from manufacturing process.

Keywords Robust optimisation · uncertainty quantification and propagation ·
Gaussian process regression · Polynomial chaos expansion · Polymerase chain
reaction

Yongxing Wang
School of Computing, University of Leeds, Leeds, UK
E-mail: scsywan@leeds.ac.uk

Hazim Hamad
School of Mechanical Engineering, University of Leeds, Leeds, UK
E-mail: mnhsh@leeds.ac.uk

Jochen Voss
School of Mathematics, University of Leeds, Leeds, UK
E-mail: J.Voss@leeds.ac.uk

Harvey M. Thompson
School of Mechanical Engineering, University of Leeds, Leeds, UK
E-mail: H.M.Thompson@leeds.ac.uk

2 Yongxing Wang et al.

1 Introduction

Robust design approaches have been developed to make the product and manufac-
turing process robust and insensitive to external noise or tolerance [42,40,24,63].
Since the pioneering work by [53], robust design approaches have been developed
to include different statistical methods [55,60] and robust optimisations [3,7,6],
and applied to solve a variety of engineering problems [9,49,57]. In this article,
we investigate a two-objective robust optimisation approach, through Gaussian
Process Regression (GPR) as a surrogate model and Polynomial Chaos Expansion
(PCE) as a tool of uncertainty propagation, which can be directly extended to
multi-objective cases as well.

Robust optimisation is based on well-developed mathematical optimisation
techniques. We consider a robust optimisation based upon the information of mean
and standard deviation of data-driven surrogate models fix) (i = 1, 2, . . . ,m),
which can be formulated, with consideration of general inequality constraints, as
follows:

minimize
x∈Rd

m∑
i=1

[
aiµfi(x) + biσfi(x)

]
,

subject to gj
(
x, σfi(x)

)
n ≤ 0,

i = 1, . . . ,m, j = 1, . . . , n,

(1)

where x is a d-dimensional design variable and fi(x) are the objectives with
ai, bi ≥ 0 being the weights. In the above formulation (1), robustness of the ob-
jective is considered as a weighting combination of µfi and σfi , and robustness of
the constraints is considered in function gj . Objective fi(x) usually represents a
physical system, which will be approximated by a data-driven surrogate model in
this article, through the use of a combination of the GPR and PCE methods.

Gaussian process regression is a principled, practical and probabilistic machine
learning approach [59], which can learn the mean and standard deviation from data
at the same time, and thus convenient to be applied to robust optimisations [27,
33]. Compared with other machine learning methods [38], GPR can estimate all
the hyperparameters by maximising the so-called marginal likelihood using the
training dataset [59], and consequently provides the user a non-parametric model.
The mean of the GPR may be directly used for prediction if the user has a noise-
free training data. In this paper, we use the standard deviation predicted by the
GPR method to analyse the noise from our training dataset and compare it with
an input manufacturing error. The error from surrogate model is measured at the
output of the GPR model, while the error from manufacturing process is measured
at the input. Therefore, we propagate the manufacturing error to the output using
the PCE method, quantify these two types of errors in the same physical domain,
and then formulate a new surrogate model with consideration of these two types
of uncertainties.

Polynomial chaos expansion is a rigorous approach for representing a random
variable (such as an output variable) in terms of a polynomial function of other
random variables (such as input variables), which was first introduced by [58] and
widely applied in engineering community [19,20,12,54]. Its generalization to dif-
ferent polynomial families and proof of existence and convergence was introduced
in [61,14]. The PCE method can be used to propagate input uncertainties to the

Robust optimisation 3

output variables of interest, which can be analysed and assessed correspondingly
[62,15]. The PCE method has a strong mathematical basis and represents a collec-
tion of polynomial approximations, which was particularly designed for uncertainty
quantification [16]. There are intrusive and non-intrusive PCE methods [39,29,52]:
the former is a complete non-sampling-based method to determine the uncertainty
propagation by modification of the control equations, Ordinary/Partial Differen-
tial Equations (ODE/PDE), as a stochastic ODE/PDE considering a probabilistic
assumption of the input parameters; while the latter computes the uncertainties
without knowing the analytical expression of the control equations, which however
is a less-sampling-based method compared to the Monte Carlo method [15,52]. We
shall adopt the non-intrusive PCE method to propagate and analyse uncertainties
in this paper.

Many publications in the domain of robust optimisations are based on linear
or quadratic programming, or convex optimisations [4,5,7]. For engineering appli-
cations, most robust optimisations focus on a straightforward use of Monte Carlo
method to create input data points and a surrogate model to evaluate the out-
puts [43,63,50,34] assuming that the data are reliable or noise-free; or use of the
PCE method with black-box simulation models to create probabilistic surrogates
and optimising objectives [2,18,26]. Both the GPR and PCE methods have been
adopted in a recent paper [56] for a probabilistic surrogate model and uncertainty
propagation respectively. A combined study of surrogate model, error quantifica-
tion and robust optimisation is limited. Most of existing methods usually provide
a black-box flow chart of the overall algorithm [26,56], without study of the in-
termediate result where errors may be introduced. There is a lack of a general
framework which enables us to distinguish and analyse different types of uncer-
tainties, for example, uncontrollable noise from the training dataset, noise due to
limited/finite discrete data points, or controllable errors from the inputs. We shall
consider these types of uncertainties in this paper and consequently formulate
rigorous optimisation problems.

There are specific questions we try to answer in this article: (i) when using a
surrogate model to predict outcomes, are there any uncertainties from the surro-
gate itself and how to quantify these? (ii) when propagating errors from the input
to the output variables, has the prediction (mean or standard deviation) converged
in terms of, such as sampling points when using Monte Carlo method or the poly-
nomial order when using PCE method? (iii) after quantification of different sources
of uncertainties, how to formulate the robust optimisation problems?

In order to address the above questions, we shall use the GPR method to cre-
ate a surrogate model with consideration of uncertainties and the PCE method
to quantify the error propagation. Both the GPR and PCE methods rely on a
training dataset (including inputs and outputs), and the model parameters have
to be trained/optimised before applying these methods to predict output values
on any new input data. A subtle difference between these two methods is that the
PCE model requires its input data satisfies a specified probabilistic distribution,
while the GPR model does not (although it requires the error satisfies Gaussian
distribution when training the model). The GPR method is designed to predict a
mean as well as quantify uncontrolled uncertainties such as noise from the train-
ing dataset, while the PCE method is convenient to quantify uncertainty (both
controlled and uncontrolled) propagation from input variables to output variables
so that one can analyse and optimise corresponding variables of interest. To the

4 Yongxing Wang et al.

best of our knowledge, the combination of these two methods has not been fully
studied. A PC-Kriging method is introduced in [48] to achieve more accuracy than
two distinct techniques GPR and PCE; another surrogate modelling technique is
developed based on GPR but using the least-angle-regression selection algorithm
of PCE method in [31]; [32] combines the GPR and PCE methods and formulates
a multi-fidelity design optimisation algorithm, and they focus on the study of the
use of low-fidelity simulation data to obtain more information about the design
space. Our study is focused on creating a rigorous robust optimisation framework,
which allows us to optimise multi-objective functions while considering different
types of uncertainties.

Geometry of the serpentine channels of PCR devices is very important and a
number of studies have attempted to improve the PCR performance based upon
different objectives. For example, spiral microchannels are used in [23,37] to re-
duce the reaction time, while radial [46] and straight channels [11,17] have also
been explored to achieve the same goal. It is demonstrated in [13] that the wall
temperature is more uniform by adopting a diverging fluidic channel, which was
a first step to improve the overall temperature uniformity within the PCR zones.
In addition, an electro-kinetic flow is used to create a plug-like velocity profile in
[21], which reduces sample dispersion and increases flow-rate control within PCR
channels and further improves the flow uniformity. Other objectives and control
variables have also been explored, for example, minimising the heating power by
optimising the thermal properties which are biologically compatible with the PCR
liquid has been studied in [36]. In our previous study [22], we performed the Com-
putational Fluid Dynamics (CFD) analysis for a PCR device, and focused on
single objective and deterministic optimisation. This paper applies a novel robust
optimisation approach to the geometrical design and pattern arrangement of the
serpentine channel of a PCR device, with the aim of minimising competing objec-
tives: pressure drop and temperature uniformity.

The original contributions of this paper are summarised as follows: (1) we
propose a general two-objective robust optimisation framework based on a combi-
nation of Gaussion process regression and polynomial chaos expansion, by asking
rigorous mathematical questions in every step, to the best of our knowledge, which
have not been addressed in the engineering community. For example, how to eval-
uate the error of the surrogate model when two groups of sampling points provide
different outputs? whether the order of the PCE polynomials is appropriate (too
low or too high)? (2) we analyse and quantify different types of uncertainties,
such as uncontrollable noise from the training dataset, noise due to limited/finite
discrete data points, or controllable errors from the inputs; (3) three new robust
optimisation problems are formulated and solved using open-source libraries GPy,
ChaosPy and SciPy; (4) the proposed approach is applied to robust design opti-
misation of a polymerase chain reaction flow system, which provides engineers a
reliable guidance for manufacturing the PCR device.

The paper is organised as follows. Section 2 introduces the GPR and PCE
methods generally, which are implemented in Section 3 to produce surrogate mod-
els with uncertainty. Three robust optimisation problems are introduced and solved
in Section 4, with conclusions drawn in section 5. To avoid diverging from the main
context of this paper, we provide the source of the training dataset in Appendix
6.1, and Python code to test the PCE method in Appendix 6.3, to predict on uni-

Robust optimisation 5

form grids in Appendix 6.4 and to optimise the objective functions in Appendix
6.5.

2 Gaussian process regression and polynomial chaos expansions

In this section, we briefly review and introduce the main tools used through this
paper: Gaussian process regression and polynomial chaos expansion.

2.1 Gaussian process regression

Without losing generality, let us consider a dataset with two input and two output
variables: (x1, x2, y1, y2)j (j = 1, 2, . . . , n) denote the n data points with input
x = (x1, x2) and corresponding output (y1, y2). The GPR can learn the relation
fi(·) between x and yi (i = 1, 2) from these n training data points, i.e. it computes

a surrogate model fi(x) ∼ N
(
µgpr
fi

, (σgpr
fi

)2
)
with the superscript “gpr” denoting

the mean or standard deviation from the GPR model:

µgpr
fi(x)

= kT (K+ αI)−1
yi, (2)

and

σgpr
fi(x)

= k(x,x)− kT (K+ αI)−1
k. (3)

In the above, yi = (yi1, yi2, . . . , yin)
T (i = 1, 2) is a column vector from the ob-

servations of the ith component of the output variables, and α is a specified noise
in this observation yi. k = k (xp,xq) = σ2

fexp
(
− 1

2l2 |xp − xq|2
)
is the squared-

exponential covariance function, with σf and l being hyperparameters, which can
be determined by cross validation [59,35] or maximising the marginal likelihood
[59], I is the identify matrix, and

k = [k(x,x1), k(x,x2), . . . , k(x,xn)]
T
, (4)

K =

k(x1,x1) k(x1,x2) . . .
...

. . .

k(xn,x1) k(xn,xn)

 . (5)

The standard deviation in (3) of the GPR model can be interpreted as uncer-
tainties from two different sources: one is the noise α of the training data point
(y1, y2), and the other one is the discrete error of the training dataset itself, due
to the finite/limited data points. It is reasonable to assume that data points from
CFD simulations are clean and noise free [45,51], so that we will be able to specify
a very small α when training our GPR model in Section 3.1. However, we do not
take this for granted and we also test the convergence of µgpr

fi(x)
and σgpr

fi(x)
in terms

of this noise parameter α, and choose the converged α for other analyses. For the
second type of uncertainty, we shall analyse and quantify this uncontrollable noise
in Section 3.2 and distinguish it from the manufacturing errors.

6 Yongxing Wang et al.

2.2 Polynomial chaos expansions

Real manufacturing processes create inevitably a certain level of error in the input
geometrical parameters. Our approach is to assume a reasonable control error in
the input parameters and use the PCE method to propagate this error to the
output variables. These resultant probabilistic surrogate models are then used to
solve optimisation problems in Section (4).

Considering an error ex around an input point x = (x1, x2), we need to know
the corresponding error ey in the outputs yi = fi(x) (i = 1, 2). A fast analysis of
this problem is to use the Taylor expansion to express yi around x if the derivative
of fi is available. Alternatively, a convenient approach might be to create random
points (based upon a distribution assumption such as ex ∼ N (0, σ2

n)) around the
input x, and calculate the corresponding statistics around the output yi = fi(x).
The former is an efficient approach, but unfortunately one cannot easily access the
derivative of fi for many engineering problems. The latter is the so-called Monte
Carlo method which can be very slow – millions of data points can be needed
in order to achieve a converged result (see Appendix 6.3 for two tests using this
method).

The PCE method is much more efficient than the Monte Carlo approach (see
6.3), and only needs a few data points around x in order to calculate the error
at the output. We assume x1 and x2 are independent random variables, and the
PCE method approximates the output yi (i = 1, 2) as a linear combination of
orthogonal polynomial basis φk(x) = φk1

(x1)φk2
(x2),

yi ≈
m∑

k=0

βi
kφk(x). (6)

Both xi and yi (i = 1, 2) are regarded as random variables. We assume our input
variables satisfy Gaussian distribution, which requires Hermite PCE basis func-
tions. Other distributions require different basis functions [1,15].

There are intrusive and non-intrusive PCE methods to compute the PCE co-
efficients βi

k (k = 0, . . . ,m). The former requires modification of the governing
equations of the system under study, while the latter are sampling-based meth-
ods requiring solutions of the governing equations for specific values of the ran-
dom variables considered [52]. Non-intrusive methods provide data-driven models
based on experimental or simulation data. Here, we use a non-intrusive method,
for which there are pseudo-spectral projection and linear regression methods to
compute the coefficients based on design variable sampling. Both of these methods
are implemented in ChaosPy [15], which is used in this paper.

3 Surrogate model

In this section, we demonstrate the process of creating a probabilistic surrogate
model step by step, with quantification of different sources of uncertainties. Con-
sidering simulation data from a PCR thermal flow system (Appendix 6.1): one
simulation provides one data point: (x1, x2, y1, y2) = (Wc, Hc,∆p, Tdev), with Wc

and Hc being the channel width and height of the PCR device respectively, and
∆p and Tdev being the pressure drop and temperature standard deviation of the

Robust optimisation 7

PCR thermal flow system respectively. We generate simulation data at n = 100
input points (Wc, Hc) ∈ [0.015, 0.5]× [0.05, 0.15], including 20 evenly spaced points
at boundaries and 80 random, uniformly distributed points inside the domain as
shown in Figure 1. These generate the corresponding output variables (∆p, Tdev)
which are found to lie within [50.87, 1437]× [12.87, 16.29]. We deliberately use data
at the boundaries to improve the accuracy of extrapolation outside of the domain,
which is required when applying the PCE method, as will be discussed in Section
3.2.

For presentational convenience, all the data points (x1, x2, y1, y2)j (j = 1, 2, . . . , n)
are normalised to the range [0, 1] by

xi − xmin
i

xmax
i − xmin

i

,
yi − ymin

i

ymax
i − ymin

i

, i = 1, 2 (7)

before feeding the training data to the GPR or PCE codes. The results can be
easily transformed from the normalised space to the physical space using (7),
and the corresponding scales in the physical domain are given when necessary
in the following sections. We also generate a test dataset of Ntest = 100 × 100

Fig. 1: Training data points: 20 evenly spaced points on boundaries and 80 random, uniformly
distributed points inside the domain.

evenly spaced points in the domain Ω = [−0.1, 1.1] × [−0.1, 1.1] in order to test
the surrogate model. The domain is extended by 0.1 around the boundary of the
original domain Ω0 = [0, 1]× [0, 1], so that we can extrapolate values to accurately
compute the error propagation at the boundaries.

3.1 GPR model

As discussed in Section 2.1, parameter α is a specified noise in the GPR model; it
is also a regularisation parameter to inverse the matrix K as indicated in formula
(2) and (3). Although it is reasonable to specify a small noise parameter α for
data from the CFD simulations [45,51], the question is how small should α be and

8 Yongxing Wang et al.

whether too small α would lead to a singular matrix K + αI. A proper method
to address this question is to test convergence of the outputs (mean and standard
deviation here) in terms of the parameter α. Here, we investigate the effect of
varying α from 10−12 to 10−8 on the accuracy and stability of the GPR algorithm
by comparing the predicted mean and standard deviation. We plot the predicted
norm of the mean and standard deviation as a function α in Figure 2, from which
it can be seen that the mean is effectively constant, and there is no instability
issue when using such small values of α. Therefore, we will use a converged value
α = 10−11 in the following sections. The mean and standard deviation response
surfaces are plotted in Figure 3, noting from (3) that the standard deviation only
depends on the input data, so we have σgpr

f1
= σgpr

f2
.

Fig. 2: Mean and standard deviation for f1 and f2 as a function α, where

∥ · ∥ = 1
Ntest

√∑Ntest
k=1 (·)2.

Robust optimisation 9

Fig. 3: The mean of f1(x) and f2(x), and standard deviation plotted on
Ω = [−0.1, 1.1] × [−0.1, 1.1] and Ω0 = [0, 1] × [0, 1].

3.2 Probabilistic surrogate model

As a starting point, we assume a manufacturing error ex = 0.05 in the input
training dataset [43,47], so that we have 95% confidence that an input data point
xi (i = 1, 2) lies in [xi−ex, xi+ex]. Under the assumption of ex ∼ N (0, σ2

n), we have
σn = ex/2 = 0.025. We then use the PCE method to propagate this error to the
outputs and create a probabilistic surrogate model, based upon the GPR surrogate
model for calculating function values around point x = (x1, x2) (see Appendix 6.3
for a comparison of this PCE method to the Monte Carlo method widely used in
literature). However, before doing this we ask two questions as follows: (i) what
is the appropriate order for the polynomial basis used in the PCE method? (ii)
How to quantify and distinguish the uncertainties from the surrogate model and
the manufacturing error?

3.2.1 Convergence of the PCE method:

in order to compute the PCE coefficients at a point x ∈ Ω0, we need several
quadrature points x̃ around x (pseudo-spectral projection method [15]). The input

10 Yongxing Wang et al.

of these quadrature points are determined by x and the order of the polynomial
basis of the PCE method, and the outputs are computed by our GPR surrogate
model. However, instead of using µgpr

fi(x̃)
to directly compute the ouptut values, we

should consider the uncertainty σgpr
fi(x̃)

as well; we can not neglect σgpr
fi(x̃)

by directly

comparing its magnitude with the manufacturing error σn = ex/2, because σn is
from the input space while σgpr

fi(x̃)
is in the output space.

We test the PCE method at several different points inside the domain Ω0

as well as on its boundaries. In order to test the influence of σgpr
fi

on the error

propagation, we add Gaussian noise, generated by N
(
0,
(
σgpr
fi(x̃)

)2
)
, to µgpr

fi(x̃)
for

every point x̃ to compute the PCE coefficients as discussed in Section 2.2 – the
Python implementation is given in Appendix 6.3.

We test our code based on several cases of random noise at different random
points, and we report in Figure 4 the error at three particular points of interest for
six cases of random noise, from which it can be seen that a 3rd order polynomial
basis would be sufficiently accurate to approximate the error propagation. Notice
that in Figure 4 the superscript “pce” denotes the mean or standard deviation
computed using the PCE method, corresponding to the superscript “gpr” (used
through this paper) for the GPR model. In order to compute the coefficients of
this 3rd order polynomial (using the pseudo-spectral projection method [15]), we
need to evaluate µgpr

fi
at points 0.05836 away from the boundary of Ω0, which

can be achieved by the extrapolation of our GPR model. Also notice that higher
order PCE polynomial basis is needed to evaluate µgpr

fi
at points further away

from the boundary. For example, a 6th order polynomial chaos expansion at point
(1, 1) needs to compute µgpr

fi
at point (1.09376, 1.09376) which has large variation

as shown in Figure 3. This introduces extrapolation errors as well, which can
be observed from Figure 4 (a) and (d) using a 7th and 6th order of polynomials
respectively. We also present the corresponding standard deviation of the GPR
model in the captions in Figure 4, from which we can see this standard deviation
of the GPR model is negligible compared with the standard deviation induced by
the manufacturing errors. This observation is further validated in Figure 5 where
the ratio of the standard deviation of the GPR model to the standard deviation
of the PCE model (where the random noise is considered as described above) is
less than 0.1 for f1 and 0.001 for f2.

3.2.2 Noise propagation and response surface with confidence region:

we can now use the 3rd order polynomial and the GPR model to propagate the
input errors to the outputs and create a probabilistic surrogate model, which
incorporates the uncertainty from manufacturing process. The response surfaces
with a 95% (two standard deviation) confidence region are plotted in Figure 6,
from which it can be seen that the input error is amplified where the response
surface is steep. This is consistent with analysis using Taylor expansions. We also
notice that the second design variable x2 has less influence on objective f1 as
shown in Figure 6: f1(x1, x2) is almost constant for the same x2, and the two
design variables have almost equal influences on objective f2: f2(x1, x2) is visually
symmetric along x1 = x2. We plot in Figure 7 the projection of this mean surface
of f1(x1, x2) to x1 = 0 with a confidence interval for increased clarity.

Robust optimisation 11

(a) σgpr
f1

(0.5, 0.5) = 4.9814 × 10−5. (b) σgpr
f1

(1, 0) = 9.9812 × 10−5.

(c) σgpr
f2

(0.5, 0.5) = 4.9814 × 10−5. (d) σgpr
f2

(1, 1) = 9.9805 × 10−5.

Fig. 4: Error propagation using the PCE method at different points for six cases of random noise
in each figures.

4 Robust optimisation

The probabilistic surrogate model is now used to solve the following three robust
optimisation problems. The optimisation problems considered in this section all
involve non-linear objective functions and constraints, and we shall use the trust
region algorithm provided in the Python library SciPy to solve these challenging
optimisation problems. We find that the convergence of the algorithm highly relies
on how stringent the constraints are: the more stringent the constraints are, the
more difficult the algorithm converges. However, we would not focus on the study
of the performance of the optimisation algorithm in the paper. Instead, we focus
on the use of open optimisation libraries and we publish a typical implementation
of one of the following optimisation problems in Appendix 6.5.

Problem 1: Given the probabilistic models f1(x) and f2(x),

minimize
x∈Ω0

µω(x) =: ωµpce
f1(x)

+ (1− ω)µpce
f2(x)

,

subject to σpce
f1(x)

< σ1, σpce
f2(x)

< σ2.
(8)

12 Yongxing Wang et al.

Fig. 5: The ratio of the standard deviation of the GPR model to the standard deviation of the
PCE model.

Fig. 6: Response surfaces with 95% confidence region using the PCE method to propagate an
error of 5% (of the maximum: 1 in the normalised space, and 0.5 for Wc and 0.15 for Hc in the

physical space) from the input to the output.

Fig. 7: Response surfaces projected to x1 = 0 with 95% confidence interval.

Robust optimisation 13

with ω ∈ [0, 1].
We first study the Pareto curve which is defined by

p(ω) =
(
µpce
f1(x∗(ω))

, µpce
f2(x∗(ω))

)
with x∗(ω) = argmin

x∈Ω0

µω(x). (9)

The Pareto curve is a function of parameter ω, which gives a set of points
(
µpce
f1(x∗(ω))

, µpce
f2(x∗(ω))

)
or curve on a two dimensional plane. In Figure 8 (a), the Pareto curve are plotted
for four different constrained cases and one unconstrained case. First, we observe
that the Pareto curve is pushed away from the origin as the constraints equally
become more stringent, noting also this has a greater influence on the second ob-
jective µpce

f2
. Consequently, the corresponding optimal design space is pushed away

form the boundaries of the original design space Ω0 as shown in Figure 8(b). Sec-
ondly, the marked points in Figure 8 indicate a compromise minimisation between
the two objectives µpce

f1
and µpce

f2
, where both objectives achieve a minimum of

around 0.2 (328.096Pa for pressure drop and 13.554◦C for the temperature de-
viation in the physical space) with corresponding ω = 0.45 in (8). The optimal
design point (0, 0.4484) as shown in Figure 8(b) has a 95% confidence interval
(0.166, 0.237) = 0.2015 ± 0.071 for f1 and (0.158, 0.247) = 0.2025 ± 0.089 for f2
as indicated by the marked points in Figure 7. Thirdly, if we want to shrink the
confidence intervals so that our prediction is more robust, such as with a 95%
confidence interval of ±0.04 (standard deviation of 0.02) for both objectives, we
can move from point (0.1991, 0.2019) on the blue curve in Figure 8(a) to the green
curve with the same µpce

f1
. In this case, we are more confident that we would be

able to achieve that objective, which is now around 0.2 for µpce
f1

(unchanged) and

0.3 for µpce
f2

. We briefly conclude as follows: the more we can reduce µpce
f1

(µpce
f2

),

the less we would reduce µpce
f2

(µpce
f1

) – moving from one end to other on each

curve in Figure 8 (a); the more confident we are in the reduction of µpce
f1

(moving
from the blue curve across the green one, and towards the purple curve at a fixed
µpce
f1

in Figure 8(a)), the less confident we are in the reduction in µpce
f2

. We can
achieve this by keeping the second design variable constant and increasing only
the first design variable as shown in 8 (b). The reason we can do this is because
the response surface for f1 is almost constant for a fixed x2 as shown in Figure 6.

We test another case of constraints in Figure 9, where the upper bound of σpce
f1

varies while the upper bound of σpce
f2

stays the same. It can be seen from Figure
9 that the first parameter x1 of the optimal designs is almost unchanged while
the second one x2 varies rapidly as the upper bound of σ1 varies. This is different
in the first test case shown in Figure 8 where the main variation of the optimal
designs lies in the first parameter x1.

Problem 2: Given the probabilistic models f1(x) and f2(x),

minimize
x∈Ω0

fw(x) =: µpce
f2(x)

+ 2σpce
f2(x)

,

subject to µpce
f1(x)

+ 2σpce
f1(x)

< f̄1.
(10)

The objective function fw(x) in Problem 2 defines the “worst case” for f2
with 95% confidence, and a minimisation of fw(x) given a safe (95% confidence)
upper bound f̄1 for f1. We plot, in Figure 10, f∗w = min

x∈Ω0

fω(x1, x2) and (x∗1, x
∗
2) =

14 Yongxing Wang et al.

(a) Pareto curve for the first test case of Problem
1.

(b) Opimal design space for the first test case of
Problem 1.

Fig. 8: Pareto curve p(ω) and the corresponding designs for different cases of constraints.

(c) Pareto curve for the second test case of
Problem 1.

(d) Opimal design space for the second test case
of Problem 1.

Fig. 9: Pareto curve p(ω) and the corresponding designs for different cases of constraints.

argmin
x∈Ω0

fω(x1, x2) as functions of f̄1, i.e.: f∗w
(
f̄1
)
, x∗1

(
f̄1
)
and x∗2

(
f̄1
)
. It can be

seen from Figure 10 that minimising fw is always accompanied with an increasing
upper bound f̄1. The meaning of the marked points (which correspond to the same
points in the design space) shown in Figure 10 is: we can reduce fw to f∗w = 0.2418
by choosing x1 = x∗1 = 0 and x2 = x∗2 = 0.4354, at the same time we also have
95% confidence that f1 < 0.2424.

Robust optimisation 15

Problem 3: Given the probabilistic models f1(x) and f2(x),

minimize
x∈Ω0

fw(x) =: µpce
f1(x)

+ 2σpce
f1(x)

,

subject to µpce
f2(x)

+ 2σpce
f2(x)

< f̄2.
(11)

Fig. 10: Solution of Problem 2 as a function of upper bound f̄1.

Fig. 11: Solution of Problem 3 as a function of upper bound f̄2.

Similar to Problem 2, Problem 3 can be interpreted as minimising the “worst
case” of f1 given a stringent (95% guaranteed) constraint for f2. It can be seen
from Figure 11 that we can reduce f1, with 95% confidence, to f∗w = 0.2414 by
choosing x1 = x∗1 = 0 and x2 = x∗2 = 0.4367, at the same time we also have 95%

16 Yongxing Wang et al.

confidence that f2 < 0.2424. This is consistent with the result obtained by solving
Problem 2.

5 Conclusion

In this paper, we present a robust optimisation framework which can be applied
to general data-driven two-objective optimisation problems. We provide a rigorous
and detailed analysis of uncertainties from both the input and output variables
based upon Gaussian Process Regression (GPR) and Polynomial Chaos Expansion
(PCE), and quantify the uncertainties of surrogate model by analysing statistics of
different types of noise from the dataset. Our surrogate model is not deterministic
due to white noise and limited training dataset, and it provides us a quantified
error. Therefore, we quantitatively distinguished and compared this error with the
manufacturing error when propagating it from the input to output. Before evalu-
ating the error at the output, we also tested the convergence of error in terms of
number of sampling points and polynomial order, and ensured the output error
was not varying. Based upon these rigorous evaluation, we formulated and solved
rigorous optimisation problems based upon our surrogate model, which provides
us a way to optimise the objectives with control of input errors. We assess the pro-
posed methodology using validated data from CFD simulation of a thermal fluid
process on a micro Polymerase Chain Reaction (PCR) device, and conclude that
the approach is efficient, robust, general and easy to implement using open-source
libraries: GPy [25] to implement the GPR method, ChaosPy [15] to implement the
PCE method and SciPy [8] to solve the optimisation problems. Our optimisation
results provide engineers a reliable guidance for manufacturing the PCR device.
Although the method is presented based upon a two-objective optimisation prob-
lem and data from CFD simulations of a PCR device, it is straightforward to
be extended to multi-objective case using laboratory data, which is our ongoing
research.

6 Appendix

6.1 Validated data from CFD analysis

The thermal flow model is based on a prototypical PCR flow analysed in our
recent paper [22], which has been validated both numerically and experimentally.
We briefly describe the model in this appendix.

PCR systems are typically based on a serpentine fluidic channel arrangement,
see Figure 12, in order to create a thermal cycling procedure which amplifies
DNA segments, allowing detection and identification of gene sequences. Within
each straight channel component there are three thermal stages of denaturation
(95oC), annealing (56oC) and extension (72oC). The geometrical parameters
include Wc, Hc, Ww, Hb and L, which are the channel width, height, the spacing
between the channels, the bottom height and total length respectively.

A complex heat transfer model coupled with incompressible Navier-Stokes
equations is adopted to describe this thermal flow system, and the governing equa-
tions are solved using COMSOL Multiphysics 5.4, see [22] for more details. Nu-

Robust optimisation 17

Fig. 12: A schematic diagram of the whole (left) and a section (right) of the serpentine
microfluidic channel.

merical validations include first, mesh convergence on a series of structured finite
element grids, and then comparison with both experimental [41] and published
numerical results [10]: Figure 13 shows a good agreement between the experimen-
tal and our numerical results, and Figure 14 shows that the numerical predictions
of the temperature profile along the three temperature zones are in very good
agreement with the published results.

Fig. 13: Surface temperature variation along
flow direction in a diverging microchannel.

Fig. 14: Average temperature profile along the
centreline.

6.2 The GPR-assisted optimisation

In this section, we test the GPR-assisted optimisation algorithm and compare
it with a two-dimensional and a three-dimensional analytical benchmarks: the
Rosenbrock function [44] and the Ishigami function [28], which have been widely
used to validate surrogate model and optimisation algorithms in the literature [48,

18 Yongxing Wang et al.

30]. The Rosenbrock function is a polynomial function with a two-dimensional
input space:

frosen = 100
(
x2 − x21

)2

+ (1− x1)
2
, (12)

with x1, x2 ∈ [−2, 2]. The Ishigami function is a smooth function with three input
parameters:

fishigami = sin(x1) + 7sin2(x2) + 0.1x43sin(x1), (13)

with x1, x2, x3 ∈ [−π, π]. Visualizations of these two functions are shown in Fig-
ure 15 and 16, from which it can be seen that they are highly non-linear and
present different types of numerical challenges: the Rosenbrock function is slightly
unsymmetrical (see Figure 15 (b)) and its minimum sits at point (1, 1) with
frosen(1, 1) = 0, which is numerically sensitive to a surrogate model; the Ishigami
function is symmetric with respect to x1-x2 plane and x1-x3 plane, which has
six minimal points (see Figure 16 (b)), (−π/2, π, π), (−π/2,−π, π), (−π/2, 0, π),
(−π/2, π,−π), (−π/2,−π,−π), (−π/2, 0,−π), with all their function values being
fishigami = −10.7409091. It is understandable that a numerical minimal point de-
pends on the initial guess of the numerical algorithm. We shall demonstrate that
our surrogate model and surrogate-assisted optimisation algorithm can compute
the minimums to a sufficient accuracy.

(a) 3D plot of the Rosenbrock function. (b) Contour plot of the Rosenbrock function.

Fig. 15: Visualization of the Rosenbrock function.

For these two test functions, although a uniform sampling method would be
better due to the prior knowledge of the smooth functions (we actually tested
the case of using uniform training dataset, which produced as accurate results as
the analytical functions. We do not present the results here due to limited space,
but please refer the our GitHub repository for the implementations and more
results: https://github.com/yongxingwang/), we purposely use random sampling
data strategies: 10 random points in one dimension, which gives us 100 random
training points for the two-dimensional Rosenbrock function and 1000 random

Robust optimisation 19

(a) 3D heat map of the Ishigami function. (b) Contour plot of the Ishigami function.

Fig. 16: Viusalization of the Ishigami function.

training points for the three-dimensional Ishigami function as shown in Figure 17.

(a) Training dataset for the Rosenbrock
function.

(b) Training dataset for the Ishigami function.

Fig. 17: Random traning dataset for the Rosenbrock function and the Ishigami function.

The GPR prediction for the Rosenbrock function is shown in Figure 18 in
the normalized space. By comparing with the analytical function, the L2-error (in
the normalized space) is very small: 6.758355 × 10−3. A comparison between the
analytical and GPR prediction of the Ishigami function is shown in Figure 19, from

20 Yongxing Wang et al.

which we can not see a difference by naked eyes – the L2-error in the normalized
space is 9.297995× 10−3.

(a) Mean. (b) Standard deviation

Fig. 18: GPR prediction of the Rosenbrock function.

(a) Heat map of the Ishigami function. (b) Heat map of the mean of GPR prediction of
the Ishigami function

Fig. 19: Comparison between the analytical and GPR prediction of the Ishigami function.

We finally compare the optimisation results between the analytical function
and the surrogate-assisted one. We implemented the optimisation algorithms for

Robust optimisation 21

both the GPR surrogate and the analytical function. Although the gradient is avail-
able for this analytical function, we do not use the gradient information in order to
make a fair comparison. We use the non-gradient based Nelder-Mead algorithm and
set the same convergence criterion in scipy.optimize package. Using the analytical
function expression, the Nelder-Mead algorithm can accurately find the minimums
for both the two test cases: (0.999527, 0.999502) with frosen (0.999527, 0.999502) =
2.24154 × 10−11 for the Rosenbrock function after 49 iterations starting from
initial guess (0, 0);

(
−1.5707964,−1.34840126× 10−9,−3.14159265

)
with fishigami(

−1.5707964,−1.34840126× 10−9,−3.14159265
)
= −10.7409091 × 10−11 after 15

iterations starting form initial guess (0, 0). It is possible to find other minimums
for the Ishigami function if starting from different initial guesses, but it may be not
necessary to present all the results here. To compare with the surrogate-assisted
optimisation method, the corresponding minimum is (0.949747, 0.985490) with
frosen (0.949747, 0.985490) = −0.004411 for the Rosenbrock function after 66 itera-
tions; and the corresponding minimum

(
−1.570884,−6.786592× 10−5,−3.141593

)
with fishigami

(
−1.570884,−6.786592× 10−5,−3.141593

)
= −10.737585 × 10−11

after 45 iterations. All these results demonstrate the accuracy of the GPR sur-
rogate model and the GPR-assisted optimisation algorithm. We also point our
that the accuracy can be further improved if one uses a larger training dataset,
and please refer to our GitHub repository (https://github.com/yongxingwang/)
for more cases.

6.3 Python code for convergence test and validation of the PCE method

In this appendix, we present the Python code for testing the PCE method’s con-
vergence in terms of the order of the orthogonal polynomial basis. We also validate
the PCE by combination of two normal distributions, and compare its efficiency
against the Monte Carlo method.

1 import numpy as np
2 import chaospy as cp
3 import pandas as pd
4 import GPy
5 ###################
6 dim_in =2
7 dim_out =2
8 dim=dim_in+dim_out
9 ###################

10 pd.set_option(’precision ’,16)
11 data = pd.read_csv(’train.txt ’,header=None)
12
13 x = data.iloc[:, 0: dim_in]. values
14 y = data.iloc[:, dim_in:dim]. values
15
16 rbf = GPy.kern.RBF(input_dim=dim_in ,
17 variance=1, lengthscale =1)
18 gp = GPy.models.GPRegression(x, y, rbf)
19
20 gp.optimize ()
21 gp = GPy.models.GPRegression(x, y,
22 rbf ,noise_var =1.e-10)
23
24 c0 = cp.Normal (0.5, 0.025)

22 Yongxing Wang et al.

25 c1 = cp.Normal (0.6, 0.025)
26
27 distribution = cp.J(c0,c1)
28
29 def pce(poly_order):
30 nodes ,weights
31 = cp.generate_quadrature(poly_order ,
32 distribution ,rule=" Gaussian ")
33
34 x=np.transpose(nodes)
35 y_pred , var = gp.predict(x)
36
37 f1=y_pred [:,0]
38 f2=y_pred [:,1]
39 ’’’
40 sd=np.sqrt(var)
41 f1=y_pred [:,0]
42 f2=y_pred [:,1]
43 for i in np.arange(np.size(f1)):
44 noise = np.random.normal(0, sd[i,0], 1)
45 f1[i] += noise
46 f2[i] += noise
47 ’’’
48 polynomials = cp.orth_ttr(order=poly_order ,
49 dist=distribution)
50
51 model_approx = cp.fit_quadrature(polynomials ,
52 nodes ,weights ,f1)
53 #model_approx = cp.fit_quadrature(polynomials ,
54 nodes ,weights ,f2)
55
56 mean = cp.E(model_approx , distribution)
57 deviation = cp.Std(model_approx , distribution)
58
59 print("mean , deviation=",mean ,deviation)
60
61 file=open(" pce_convergence.txt","a")
62 file.write ("%.16f %.16f\n" % (mean ,deviation))
63 file.close()
64
65 for i in np.arange (6):
66 poly_order=i+1
67 pce(poly_order)

6.3.1 Linear combination of two normal distributions:

we first test the PCE code using aX1+ bX2 ∼ N (aµ1+ bµ2, (aσ1)
2+(bσ2)

2), given
X1 ∼ N (µ1, σ

2
1) and X2 ∼ N (µ2, σ

2
2). Since this is a linear relation, the PCE code

exactly computes the mean and standard deviation, using a first order basis. For
example, a = b = 1, µ1 = 0.5, µ2 = 0.7, σ1 = 3 and σ2 = 4, the PCE model gives
exact E(X1 +X2) = 1.2 and σ(X1 +X2) = 5 using a first order (or higher) basis,
or a = 1, b = 2, µ1 = 0.3, µ2 = 0.5, σ1 = 0.3 and σ2 = 0.2, the PCE model gives
exact E(X1 + 2X2) = 1.3 and σ(X1 + 2X2) = 0.5.

If we use the Monte Carlo method to compute the statistics of X1 + 2X2, a
random test gives: µ = 1.2993 and σ = 0.5013 using 105 samples, µ = 1.3007 and
σ = 0.4965 using 106 samples, and µ = 1.3282 and σ = 0.5002 using 107 samples.

Robust optimisation 23

A convergence of this sampling is shown in Figure 20, from which we can see how
poorly the Monte Carlo method converges: one needs a very large number of the
sampling points in order to gain an accurate approximation.

Fig. 20: Convergence of the mean (top) and standard deviation (bottom) as a function of the
number of sampling points, using the Monte Carlo method.

6.3.2 An example of non-linear function:

we generate data using the following non-linear function:

Y = sin(X1)/cos(X2) +X2X2, (14)

with X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2). For µ1 = 0.3, µ2 = 0.5, σ1 = 0.3 and

σ2 = 0.2, the convergence of the PCE method together with the convergence of
Monte Carlo method are shown in Figure 21, from which it can be seen that the
PCE is much cheaper.

Fig. 21: Convergence of the mean (top) and standard deviation (bottom) as a function of the
polynomial order of the PCE method. MC denotes Monte Carlo mehtod.

24 Yongxing Wang et al.

One should notice that assuming a Gaussian input (or other distribution) is
the prerequisite for using the PCE method, while Monte Carlo method needs
no assumption of the input variables. This is one essential reason why the PCE
method is more efficient than the Monte Carlo method.

6.4 Python code for prediction on uniform grids using PCE method

1 import numpy as np
2 import chaospy as cp
3 import pandas as pd
4 import GPy
5 ###################
6 dim_in =2
7 dim_out =2
8 dim=dim_in+dim_out
9 ###################

10 pd.set_option(’precision ’,16)
11 data = pd.read_csv(’train.txt ’,header=None)
12
13 x = data.iloc[:, 0: dim_in]. values
14 y = data.iloc[:, dim_in:dim]. values
15
16 rbf = GPy.kern.RBF(input_dim=dim_in , variance=1, lengthscale =1)
17 gp = GPy.models.GPRegression(x, y, rbf)
18
19 gp.optimize ()
20 gp = GPy.models.GPRegression(x, y, rbf ,noise_var =1.e-10)
21
22 poly_order =4
23 def pce(distribution):
24 nodes ,weights = cp.generate_quadrature(poly_order ,
25 distribution ,rule=" Gaussian ")
26
27 y_pred , var = gp.predict(np.transpose(nodes))
28
29 f1=y_pred [:,0]
30 f2=y_pred [:,1]
31
32 polynomials = cp.orth_ttr(order=poly_order ,dist=distribution)
33
34 model_approx = cp.fit_quadrature(polynomials ,nodes ,weights ,f1)
35 #model_approx = cp.fit_quadrature(polynomials ,nodes ,weights ,f2)
36
37 mean = cp.E(model_approx , distribution)
38 deviation = cp.Std(model_approx , distribution)
39
40 print("mean , deviation=",mean ,deviation)
41
42 file=open(" pce_predict.txt","a")
43 file.write ("%.16f %.16f\n" % (mean ,deviation))
44 file.close()
45
46 xset = np.linspace(0, 1, 100)
47 yset = np.linspace(0, 1, 100)
48 for xm in xset:
49 for ym in yset:
50 c0 = cp.Normal(xm , 0.025)

Robust optimisation 25

51 c1 = cp.Normal(ym , 0.025)
52 distribution = cp.J(c0,c1)
53 pce(distribution)

6.5 Python code for optimisation based on the PCE model

In this section, we only provide the Python code for solving Problem 1, which is
also a template for Problems 2 and 3.

1 import numpy as np
2 import pandas as pd
3 import GPy
4 from scipy.optimize import minimize
5 ###################
6 dim_in =2
7 dim_out =4
8 dim=dim_in+dim_out
9 ###################

10 def gpr(x):
11 x=x.reshape(1,len(x))
12 yp = gp.predict(x)[0]
13 return yp[0 ,0]* omega+yp[0 ,1]*(1. - omega)
14 def gpr_mean(x):
15 x=x.reshape(1,len(x))
16 yp = gp.predict(x)[0]
17 return [yp[0,0],yp[0 ,1]]
18 def gpr_sigma(x):
19 x=x.reshape(1,len(x))
20 yp = gp.predict(x)[0]
21 return [yp[0,2],yp[0 ,3]]
22
23 pd.set_option(’precision ’,16)
24 data = pd.read_csv(’pce_predict.txt ’,header=None)
25
26 x_train = data.iloc[:, 0: dim_in]. values
27 y_train = data.iloc[:, dim_in:dim]. values
28
29 rbf = GPy.kern.RBF(input_dim=dim_in , variance=1, lengthscale =1)
30 gp = GPy.models.GPRegression(x_train , y_train , rbf)
31
32 ’’’Run optimization ’’’
33 gp.optimize ()
34
35 ’’’Obtain optimized kernel parameters ’’’
36 noise=gp.Gaussian_noise.variance
37 print(" optimized noise: \n",noise [0])
38 l = gp.rbf.lengthscale.values
39 sigma_f = np.sqrt(gp.rbf.variance.values)
40 print(" optimized kernel parameters: \n",l,sigma_f)
41
42 rbf = GPy.kern.RBF(input_dim=dim_in , variance=sigma_f **2,
43 lengthscale=l)
44 ’’’Fix the noise variance to known value ’’’
45 gp.Gaussian_noise.variance = noise
46 gp.Gaussian_noise.variance.fix()
47 gp = GPy.models.GPRegression(x_train , y_train , rbf)
48
49 x0=[0.5 ,0.5]
50 bb=((0 ,1) ,(0 ,1))
51 sigma1 =0.08

26 Yongxing Wang et al.

52 sigma2 =0.02
53
54 from scipy.optimize import NonlinearConstraint
55 nonlinear_constraint = NonlinearConstraint(gpr_sigma ,
56 [-np.inf ,-np.inf], [sigma1 ,sigma2])
57
58 OmegaSet = np.linspace(0, 1, 100)
59 f=open(" pareto.txt","w+")
60 for omega in OmegaSet:
61 #res=minimize(gpr , x0 , bounds=bb})
62 res = minimize(gpr , x0, method=’trust -constr ’,
63 constraints =[nonlinear_constraint],
64 options={’xtol ’: 1e-12,’verbose ’: 1}, bounds=bb)
65 print(’minimum:’, omega , res.x, res.fun ,’\n’)
66 mean=gpr_mean(res.x)
67 f.write ("%.10f %.10f %.10f %.10f\n" %
68 (res.x[0],res.x[1],mean[0],mean [1]))
69
70 f.close()

Declarations

Conflicts of interests On behalf of all authors, the corresponding author states
that there is no conflict of interest.

Replication of results All the Python code of implementing the numerical tests
in this paper are attached to the appendices.

Data availability The datasets generated during and/or analysed during the cur-
rent study are available in the public GitHub repository: https://github.com/yongxingwang.

References

1. Askey, R., Wilson, J.A.: Some basic hypergeometric orthogonal polynomials that generalize
Jacobi polynomials, vol. 319. American Mathematical Soc. (1985)

2. Babaei, M., Alkhatib, A., Pan, I.: Robust optimization of subsurface flow using polynomial
chaos and response surface surrogates. Computational Geosciences 19(5), 979–998 (2015)

3. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust optimization, vol. 28. Princeton
University Press (2009)

4. Ben-Tal, A., Nemirovski, A.: Robust optimization–methodology and applications. Math-
ematical programming 92(3), 453–480 (2002)

5. Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimiza-
tion. SIAM review 53(3), 464–501 (2011)

6. Bertsimas, D., Gupta, V., Kallus, N.: Data-driven robust optimization. Mathematical
Programming 167(2), 235–292 (2018)

7. Beyer, H.G., Sendhoff, B.: Robust optimization–a comprehensive survey. Computer Meth-
ods in Applied Mechanics and Engineering 196(33-34), 3190–3218 (2007)

8. Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., Wassermann, J.: Obspy: A
python toolbox for seismology. Seismological Research Letters 81(3), 530–533 (2010)

9. Bodla, K.K., Murthy, J.Y., Garimella, S.V.: Optimization under uncertainty applied to
heat sink design. Journal of Heat Transfer 135(1) (2013)

10. Chen, P.C., Nikitopoulos, D.E., Soper, S.A., Murphy, M.C.: Temperature distribution
effects on micro-cfpcr performance. Biomedical Microdevices 10(2), 141–152 (2008)

11. Chiou, J., Matsudaira, P., Sonin, A., Ehrlich, D.: A closed-cycle capillary polymerase chain
reaction machine. Analytical Chemistry 73(9), 2018–2021 (2001)

Robust optimisation 27

12. Dodson, M., Parks, G.T.: Robust aerodynamic design optimization using polynomial
chaos. Journal of Aircraft 46(2), 635–646 (2009)

13. Duryodhan, V., Singh, A., Singh, S.G., Agrawal, A.: A simple and novel way of maintaining
constant wall temperature in microdevices. Scientific Reports 6, 18230 (2016)

14. Ernst, O.G., Mugler, A., Starkloff, H.J., Ullmann, E.: On the convergence of generalized
polynomial chaos expansions. ESAIM: Mathematical Modelling and Numerical Analysis
46(2), 317–339 (2012)

15. Feinberg, J., Langtangen, H.P.: Chaospy: An open source tool for designing methods of
uncertainty quantification. Journal of Computational Science 11, 46–57 (2015)

16. Field Jr, R.V., Grigoriu, M.: Convergence properties of polynomial chaos approximations
for L2 random variables. Tech. rep., Sandia National Laboratories (2007)

17. Frey, O., Bonneick, S., Hierlemann, A., Lichtenberg, J.: Autonomous microfluidic multi-
channel chip for real-time PCR with integrated liquid handling. Biomedical Microdevices
9(5), 711–718 (2007)

18. Gao, H., Jézéquel, L., Cabrol, E., Vitry, B.: Multi-objective robust optimization of chassis
system with polynomial chaos expansion method. Engineering Optimization 53(9), 1483–
1503 (2021)

19. Ghanem, R.G., Spanos, P.D.: Stochastic finite element method: Response statistics. In:
Stochastic finite elements: a spectral approach, pp. 101–119. Springer (1991)

20. Ghisu, T., Lopez, D.I., Seshadri, P., Shahpar, S.: Gradient-enhanced least-square polyno-
mial chaos expansions for uncertainty quantification and robust optimization. In: AIAA
AVIATION 2021 FORUM, p. 3073 (2021)

21. Gui, L., Ren, C.L.: Numeric simulation of heat transfer and electrokinetic flow in an
electroosmosis-based continuous flow PCR chip. Analytical Chemistry 78(17), 6215–6222
(2006)

22. Hamad, H.S., Kapur, N., Khatir, Z., Querin, O., Thompson, H.M., Wang, Y., Wilson,
M.: Computational fluid dynamics analysis and optimisation of polymerase chain reaction
thermal flow systems. Applied Thermal Engineering 183, 116122 (2021)

23. Hashimoto, M., Chen, P.C., Mitchell, M.W., Nikitopoulos, D.E., Soper, S.A., Murphy,
M.C.: Rapid PCR in a continuous flow device. Lab on a Chip 4(6), 638–645 (2004)

24. Havinga, J., van den Boogaard, A.H., Klaseboer, G.: Sequential improvement for robust
optimization using an uncertainty measure for radial basis functions. Structural and Mul-
tidisciplinary Optimization 55(4), 1345–1363 (2017)

25. Hensman, J., Fusi, N., Andrade, R., Durrande, N., Saul, A., Zwiessele, M., Lawrence, N.:
Gpy: A Gaussian process framework in python (2012)

26. Ho, S.L., Yang, S.: A fast robust optimization methodology based on polynomial chaos
and evolutionary algorithm for inverse problems. IEEE Transactions on Magnetics 48(2),
259–262 (2012)

27. Hopfe, C.J., Emmerich, M.T., Marijt, R., Hensen, J.: Robust multi-criteria design optimi-
sation in building design. Proceedings of Building Simulation and Optimization, Lough-
borough, UK pp. 118–125 (2012)

28. Ishigami, T., Homma, T.: An importance quantification technique in uncertainty analysis
for computer models. In: [1990] Proceedings. First International Symposium on Uncer-
tainty Modeling and Analysis, pp. 398–403. IEEE (1990)

29. Kaintura, A., Dhaene, T., Spina, D.: Review of polynomial chaos-based methods for un-
certainty quantification in modern integrated circuits. Electronics 7(3), 30 (2018)

30. Kala, Z.: Benchmark of goal oriented sensitivity analysis methods using ishigami function.
International Journal of Mathematical and Computational Methods 3 (2018)

31. Kersaudy, P., Sudret, B., Varsier, N., Picon, O., Wiart, J.: A new surrogate modeling
technique combining kriging and polynomial chaos expansions–application to uncertainty
analysis in computational dosimetry. Journal of Computational Physics 286, 103–117
(2015)

32. Korondi, P.Z., Marchi, M., Parussini, L., Poloni, C.: Multi-fidelity design optimisation
strategy under uncertainty with limited computational budget. Optimization and Engi-
neering 22(2), 1039–1064 (2021)

33. Kuss, M.: Gaussian process models for robust regression, classification, and reinforcement
learning. Ph.D. thesis, Technische Universität Darmstadt Darmstadt, Germany (2006)

34. Li, W., Gao, L., Garg, A., Xiao, M.: Multidisciplinary robust design optimization consid-
ering parameter and metamodeling uncertainties. Engineering with Computers pp. 1–18
(2020)

28 Yongxing Wang et al.

35. McGibbon, R.T., Hernández, C.X., Harrigan, M.P., Kearnes, S., Sultan, M.M., Jastrzebski,
S., Husic, B.E., Pande, V.S.: Osprey: Hyperparameter optimization for machine learning.
Journal of Open Source Software 1, 34 (2016)

36. Miralles, V., Huerre, A., Malloggi, F., Jullien, M.C.: A review of heating and tempera-
ture control in microfluidic systems: techniques and applications. Diagnostics 3(1), 33–67
(2013)

37. Mitchell, M., Liu, X., Bejat, Y., Nikitopoulos, D., Soper, S., Murphy, M.: Microfluidics,
biomems, and medical microsystems. Proc. SPIE–Int. Soc. Opt. Eng., San Jose, CA, USA
(2003)

38. Murphy, K.P.: Machine learning: a probabilistic perspective. MIT press (2012)
39. Onorato, G., Loeven, G., Ghorbaniasl, G., Bijl, H., Lacor, C.: Comparison of intrusive

and non-intrusive polynomial chaos methods for cfd applications in aeronautics. In: V
European Conference on Computational Fluid Dynamics ECCOMAS, Lisbon, Portugal,
pp. 14–17 (2010)

40. Park, G.J., Lee, T.H., Lee, K.H., Hwang, K.H.: Robust design: an overview. AIAA journal
44(1), 181–191 (2006)

41. Park, J., Park, H.: Thermal cycling characteristics of a 3D-printed serpentine microchannel
for DNA amplification by polymerase chain reaction. Sensors and Actuators A: Physical
268, 183–187 (2017)

42. Phadke, M.S.: Quality engineering using robust design. Prentice Hall PTR (1995)
43. Ren, C., Xiong, F., Mo, B., Chawdhury, A., Wang, F.: Design sensitivity analysis with

polynomial chaos for robust optimization. Structural and Multidisciplinary Optimization
63(1), 357–373 (2021)

44. Rosenbrock, H.: An automatic method for finding the greatest or least value of a function.
The Computer Journal 3(3), 175–184 (1960)

45. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer ex-
periments. Statistical Science pp. 409–423 (1989)

46. Schaerli, Y., Wootton, R.C., Robinson, T., Stein, V., Dunsby, C., Neil, M.A., French,
P.M., DeMello, A.J., Abell, C., Hollfelder, F.: Continuous-flow polymerase chain reaction
of single-copy DNA in microfluidic microdroplets. Analytical Chemistry 81(1), 302–306
(2009)

47. Schevenels, M., Lazarov, B.S., Sigmund, O.: Robust topology optimization accounting for
spatially varying manufacturing errors. Computer Methods in Applied Mechanics and
Engineering 200(49-52), 3613–3627 (2011)

48. Schobi, R., Sudret, B., Wiart, J.: Polynomial-chaos-based kriging. International Journal
for Uncertainty Quantification 5(2) (2015)

49. Shahbaz, M., Han, Z.H., Song, W., Aizud, M.N.: Surrogate-based robust design optimiza-
tion of airfoil using inexpensive monte carlo method. In: 2016 13th International Bhurban
Conference on Applied Sciences and Technology (IBCAST), pp. 497–504. IEEE (2016)

50. Shang, C., Huang, X., You, F.: Data-driven robust optimization based on kernel learning.
Computers & Chemical Engineering 106, 464–479 (2017)

51. Simpson, T., Toropov, V., Balabanov, V., Viana, F.: Design and analysis of computer
experiments in multidisciplinary design optimization: a review of how far we have come-or
not. In: 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, p.
5802 (2008)

52. Sudret, B.: Polynomial chaos expansions and stochastic finite element methods. Risk and
Reliability in Geotechnical Engineering pp. 265–300 (2015)

53. Taguchi, G.: Introduction to quality engineering: designing quality into products and pro-
cesses (1986)

54. Tootkaboni, M., Asadpoure, A., Guest, J.K.: Topology optimization of continuum struc-
tures under uncertainty–a polynomial chaos approach. Computer Methods in Applied
Mechanics and Engineering 201, 263–275 (2012)

55. Tsui, K.L.: An overview of Taguchi method and newly developed statistical methods for
robust design. Iie Transactions 24(5), 44–57 (1992)

56. Wang, F., Xiong, F., Chen, S., Song, J.: Multi-fidelity uncertainty propagation using poly-
nomial chaos and gaussian process modeling. Structural and Multidisciplinary Optimiza-
tion 60(4), 1583–1604 (2019)

57. Wang, R., Work, D.: Application of robust optimization in matrix-based lci for decision
making under uncertainty. The International Journal of Life Cycle Assessment 19(5),
1110–1118 (2014)

Robust optimisation 29

58. Wiener, N.: The homogeneous chaos. American Journal of Mathematics 60(4), 897–936
(1938)

59. Williams, C.K., Rasmussen, C.E.: Gaussian processes for machine learning, vol. 2. MIT
press Cambridge, MA (2006)

60. Wu, X., Zhang, W., Song, S.: Robust aerodynamic shape design based on an adaptive
stochastic optimization framework. Structural and Multidisciplinary Optimization 57(2),
639–651 (2018)

61. Xiu, D., Karniadakis, G.E.: The wiener–askey polynomial chaos for stochastic differential
equations. SIAM journal on scientific computing 24(2), 619–644 (2002)

62. Yang, S., Xiong, F., Wang, F.: Polynomial chaos expansion for probabilistic uncertainty
propagation. Uncertainty Quantification and Model Calibration (2017)

63. Zhou, Q., Wang, Y., Choi, S.K., Jiang, P., Shao, X., Hu, J., Shu, L.: A robust optimization
approach based on multi-fidelity metamodel. Structural and Multidisciplinary Optimiza-
tion 57(2), 775–797 (2018)

	Introduction
	Gaussian process regression and polynomial chaos expansions
	Surrogate model
	Robust optimisation
	Conclusion
	Appendix

