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a b s t r a c t

In this article we present a one-field monolithic finite element method in the Arbitrary
Lagrangian–Eulerian (ALE) formulation for Fluid–Structure Interaction (FSI) problems.
The method only solves for one velocity field in the whole FSI domain, and it solves in a
monolithic manner so that the fluid solid interface conditions are satisfied automatically.
We prove that the proposed scheme is unconditionally stable, through energy analysis,
by utilising a conservative formulation and an exact quadrature rule. We implement the
algorithm using both F-scheme and d-scheme, and demonstrate that the former has the
same formulation in two and three dimensions. Finally several numerical examples are
presented to validate this methodology, including combination with remesh techniques
to handle the case of very large solid displacement.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical methods for Fluid–Structure Interaction (FSI) have been widely studied during the past decades, and a
variety of methodologies have been developed in order to address different aspects of the FSI problem. However stability
analyses of the existing numerical methods are rare especially when large solid deformation is involved. This paper is
dedicated to developing a one-field monolithic FSI method in the Arbitrary Lagrangian–Eulerian (ALE) framework, and
establishing its stability analysis over time.

Monolithic methods have been regarded as the most robust FSI algorithms in the literature (Bendiksen et al., 1991;
Blom, 1998; Heil, 2004; Heil et al., 2008; Muddle et al., 2012; Hecht and Pironneau, 2017; Wang et al., 2017, 2019;
Hübner et al., 2004), which solve for the fluid and solid variables simultaneously in one equation system. Among these
methodologies for FSI problems, the one-field approaches (Bendiksen, 1991; Hecht and Pironneau, 2017; Wang et al.,
2017; Hübner et al., 2004) express the solid equation in terms of velocity, thus only solve for one velocity in the whole
FSI domain. In this case the whole system can be solved similarly to a modified fluid problem, and the coupling conditions
at fluid and solid interface are automatically satisfied.

The stability analysis when using the ALE framework is challenging, even for the pure fluid problem, due to the arbitrary
moving frame (Nobile and Formaggia, 1999; Formaggia and Nobile, 2004; Bonito et al., 2013). Boffi and Gastaldi (2016),
Boffi et al. (2015) present an energy stable Fictitious Domain Method with Distributed Lagrangian Multiplier (FDM/DLM),
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and Hecht and Pironneau (2017) and Pironneau (2016b) present an energy stable Eulerian formulation by remeshing.
There is also some analysis on the existence and stability of solutions of different FSI formulations, such as Du et al.
(2003), Lequeurre (2011), Grandmont and Maday (2000), Nobile and Vergara (2008). In a previous study (Wang et al.,
2019) we analysed the energy stability for a one-field FDM method. In this article we extend this one-field idea to the ALE
formulation, and the stability result is achieved by expressing the fluid and solid equations in a conservative formulation.
In this sense, the formulation is similar to the one introduced in Hecht and Pironneau (2017). However it differs from Hecht
and Pironneau (2017) in the following perspectives: (1) we formulate the solid in the reference domain and analyse the
FSI problem in an ALE frame of reference, in which case the formulation and analysis are exactly the same for two and
three dimensional cases, whereas Hecht and Pironneau (2017) formulates and analyses everything in the current domain,
for which the three dimensional case is significantly more complicated (Chiang et al., 2017); (2) we update the solid
deformation tensor (the F-scheme) while Hecht and Pironneau (2017) updates the solid displacement (the d-scheme);
3) we implement the scheme by solving an additional solid-like equation at each time step in order to move the mesh,
hilst Hecht and Pironneau (2017) implements their scheme by remeshing which is expensive in the three dimensional
ase.
The paper is organised as follows. In Section 2 the control equations for the FSI problem are introduced in an ALE

ramework. In Section 3 the finite element weak formulation is introduced, followed by spatial and time discretisations
n Section 4. The main results of energy stability are presented in Section 5. Implementation details are considered in
ection 6 and numerical examples are given in Section 7, with some conclusions in Section 8.

. The arbitrary Lagrangian–Eulerian description for the FSI problem

Let Ω
f
t ⊂ Rd and Ω s

t ⊂ Rd be the fluid and solid domain respectively (which are time dependent regions), Γt = Ω
f
t∩Ω

s
t

is the moving interface between the fluid and solid, and Ωt = Ω
f
t ∪Ω

s
t has an outer boundary ∂Ωt , which can be fixed or

moving as shown in Fig. 1. We use the superscripts f and s to denote the fluid and solid variables respectively in the above
nd throughout this article. The Eulerian description is convenient when we observe a fluid from a fixed frame, while the
agrangian description is convenient when we observe a solid from a frame moving with it. An ALE frame of reference
an be adopted when a fluid and solid share an interface and interact with each other as shown in Fig. 1, in which case
he frame moves arbitrarily from a reference configuration Ωt0 , chosen to be the same as the initial configuration at t0,
o a current configuration Ωt . Let us define a family of mappings At :

At : Ωt0 ⊂ Rd
→ Ωt ⊂ Rd, (1)

with d = 2, 3 being the dimensions. We assume that At ∈ C0
(
Ω t0

)d
is one-to-one and invertible with continuous inverse

A−1t ∈ C0
(
Ω t
)d
. Hence a point x̂ ∈ Ωt0 has a unique image x ∈ Ωt at time t , i.e.

x = A
(
x̂, t
)
= At

(
x̂
)
, (2)

nd a point x ∈ Ωt at time t has a unique inverse image x̂ ∈ Ωt0

x̂ = Â (x, t) = A−1t (x) . (3)

We call x ∈ Ωt the Eulerian coordinate, and call its inverse image x̂, via the above mapping A−1t , the ALE coordinate. We
assume that A

(
x̂, t
)
is differentiable with respect to t for all x̂ ∈ Ωt0 , and define the velocity of the ALE frame as

w
(
x̂, t
)
=

∂A
∂t

(
x̂, t
)
. (4)

Given an Eulerian coordinate x ∈ Ωt , its corresponding ALE coordinate x̂1 ∈ Ωt0 should be distinguished from its material
(or Lagrangian) coordinate x̂2 ∈ Ωt0 as shown in Fig. 1. In fact x̂2 ∈ Ωt0 (not necessarily the same as x̂1) maps to x ∈ Ωt
via the Lagrangian mapping, i.e., the trajectory of a material particle at x̂2:

Ft : x̂ ↦→ x = F
(
x̂, t
)
, (5)

and the velocity of the material particle at x̂ ∈ Ωt0 is defined by

u
(
x̂, t
)
=

∂F
∂t

. (6)

Remark 1. Although the Lagrangian configuration and the ALE configuration are not generally the same, both are chosen
to have the initial configuration Ωt0 in this article. We shall also construct the ALE mapping such that At

(
Ωt0

)
coincides

ith Ft
(
Ωt0

)
at all boundaries including the fluid–solid interface: At

(
∂Ωt0

)
= Ft

(
∂Ωt0

)
and At (Γt) = Ft (Γt).

Remark 2. The ALE mapping is the mapping that is actually used to move the domain in this article, and the purpose of
introducing the Lagrangian mapping is to discuss its related variables, such as particle velocity u and solid deformation
tensor F, which will be defined in the following context.
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Fig. 1. ALE mapping from Ωt0 to Ωt . Also shows the comparison between ALE mapping and Lagrangian mapping with Eulerian coordinate x, ALE
oordinate x̂1 and material (Lagrangian) coordinate x̂2 . Γt = Ω

f
t ∩Ω

s
t and Ωt = Ω

f
t ∪Ω

s
t , ∂Ωt = ΓD ∪ ΓN .

Formulated in the current configuration, the conservation of momentum takes the same form in the fluid and solid
omain Ω:

ρ
du (x, t)

dt
= div (σ)+ ρg, (7)

with ρ, g, u and σ being the density, gravity acceleration, velocity and Cauchy stress tensor respectively. Here we use the

notation ρ =

{
ρ f in Ω

f
t

ρs in Ω s
t
, with the superscript f and s denote fluid and solid respectively, and similar notations are

also applied to u and σ. In the above, d(·)
dt is the total derivative computed along the trajectory of a material particle at x,

.e. via the Lagrangian mapping:

du (x, t)
dt

=
du
(
Ft
(
x̂
)
, t
)

dt
=

∂u
∂t

⏐⏐⏐⏐
x=F(x̂,t)

+ (u · ∇)u. (8)

Replacing the above partial time derivative by the total derivative of

du
(
At
(
x̂
)
, t
)

dt
=

∂u
∂t

⏐⏐⏐⏐
x=A(x̂,t)

+ (w · ∇)u (9)

leads to the ALE formulation of (7)

ρ
du
(
At
(
x̂
)
, t
)

dt
+ ρ ((u−w) · ∇)u = div (σ)+ ρg in Ω. (10)

We consider here both an incompressible fluid and incompressible solid:

σ = τ − pI, (11)

ith τ being the deviatoric part of the stress tensor. For a Newtonian fluid in Ω
f
t ,

τ = τ f
= µfDu = µf (

∇u+∇Tu
)
, (12)

nd for a hyperelastic solid (Belytschko et al., 2013) in Ω s
t ,

τ = τs
= J−1Ft

∂Ψ (F)
∂F

FT , (13)

with

F =
∂F

(
x̂, t
)

∂ x̂
(14)

being the deformation tensor of the solid, JFt being the determinant of F, and Ψ (F) being the energy function of the
hyperelastic solid material. Combining with the continuity equation

∇ · u = 0 in Ωt , (15)

the FSI system is completed with continuity of the velocity and normal stress conditions on the interface Γt :

uf
= us, σ f nf

= σsnf , (16)
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and (for simplicity of this exposition) homogeneous Dirichlet and Neumann boundaries on ΓD and ΓN respectively:

u = 0, σn = 0, (17)

with ΓD ∪ ΓN = ∂Ωt as shown in Fig. 1.

3. Finite element weak formulation

Let L2(ω) be the square integrable functions in domain ω, endowed with norm ∥u∥20,ω =
∫

ω
|u|2. Let H1(ω) =

u : u ∈ L2(ω),∇u ∈ L2(ω)d
}
with the norm denoted by ∥u∥21,ω = ∥u∥

2
0,ω+∥∇u∥

2
0,ω . We also denote by H1

0 (ω) the subspace
f H1 (ω) whose functions have zero value on the Dirichlet boundary of ω.
According to Eq. (2) we construct Ωt from Ωt0 , so a function v ∈ H1

0 (Ωt ) is one-to-one corresponding to a function
ˆ ∈ H1

0 (Ωt0 ) via

v ◦ At = v̂. (18)

Choosing a test function v (x) = v ◦ At
(
x̂
)
= v̂

(
x̂
)
, the weak formulation may be obtained by multiplying v on both

ides of Eq. (10), and integrating the stress term by parts in domain Ω
f
t and Ω s

t separately:

ρ f
∫

Ω
f
t

du
(
At
(
x̂
)
, t
)

dt
· v+ ρ f

∫
Ω

f
t

((u−w) · ∇)u · v

+
µf

2

∫
Ω

f
t

Du : Dv−
∫

Ω
f
t

p∇ · v =
∫

∂Ω
f
t

σ f nf
· v+ ρ f

∫
Ω

f
t

g · v.
(19)

ρs
∫

Ω
f
t

du
(
At
(
x̂
)
, t
)

dt
· v+ ρs

∫
Ω

f
t

((u−w) · ∇)u · v

+

∫
Ωs

t0

∂Ψ

∂F
: ∇x̂v−

∫
Ωs

t

p∇ · v =
∫

∂Ωs
t

σs (
−nf )

· v+ ρs
∫

Ωs
t

g · v.
(20)

e used ∂Ψ
∂F F

T
: ∇v = ∂Ψ

∂F : ∇vF =
∂Ψ
∂F : ∇x̂v in the above deduction. Using the interface and boundary conditions (16)

nd (17), we have the following equation by adding up (19) and (20).

ρ

∫
Ωt

du
(
At
(
x̂
)
, t
)

dt
· v+ ρ

∫
Ωt

((u−w) · ∇)u · v

+
µf

2

∫
Ω

f
t

Du : Dv−
∫

Ωt

p∇ · v+
∫

Ωs
t0

∂Ψ

∂F
: ∇x̂v = ρ

∫
Ωt

g · v.
(21)

Using Jacobi′s formula (Magnus and Neudecker, 2019), we have

∂ JAt

∂t
= trace

(
JAtA

−1 ∂A
∂t

)
= trace

(
JAtA

−1
∇x̂

∂At

∂t

)
= JAt∇ ·

∂At

∂t
= JAt∇ ·w,

(22)

with A = ∂A(x̂,t)
∂ x̂ = ∇x̂At . Then we can take the time derivative outside the moving domain (conservative formula-

tion Nobile and Formaggia, 1999),

d
dt

∫
Ωt

u (x, t) · v (x) =
d
dt

∫
Ωt0

JAtu
(
At
(
x̂
)
, t
)
· v̂
(
x̂
)

=

∫
Ωt

du (x, t)
dt

· v (x)+
∫

Ωt

(∇ ·w)u (x, t) · v (x) .

(23)

Substituting (23) into (21), using

div (w⊗ u) = (w · ∇)u+ (∇ ·w)u, (24)

and combining the weak form of continuity equation (15), leads to the weak formulation of the FSI problem:
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Problem 1. Given Ωt0 , Γt0 , u(x̂, t0) and an ALE mapping At (consequently given w by (4)), ∀x̂ ∈ Ωt0 : ∀t ∈ (0, T ] find
u(x, t) = u(At

(
x̂
)
, t) ∈ H1

0 (Ωt )d and p(x, t) = p(At
(
x̂
)
, t) ∈ L2(Ωt ), such that ∀v(x) = v(At

(
x̂
)
), v ∈ H1

0 (Ωt )d and
∀q(x) = q(At

(
x̂
)
), q ∈ L2(Ωt ), the following equations hold:

ρ
d
dt

∫
Ωt

u
(
At
(
x̂
)
, t
)
· v+ ρ

∫
Ωt

(u · ∇)u · v+ ρ

∫
Ωt

(w⊗ u) : ∇v

+
µf

2

∫
Ω

f
t

Du : Dv−
∫

Ωt

p∇ · v+
∫

Ωs
t0

∂Ψ

∂F
(F) : ∇x̂v = ρ

∫
Ωt

g · v,
(25)

−

∫
Ωt

q∇ · u = 0, (26)

nd

At
(
∂Ωt0

)
= Ft

(
∂Ωt0

)
, At (Γt) = Ft (Γt) , (27)

ith Γt0 and ∂Ωt0 being the initial interface and outer boundary respectively, as shown in Fig. 1, and Ft being the
agrangian mapping as defined in (5).

. Discretisation in space and time

Define a stable finite element space, such as the Taylor–Hood elements, for the velocity–pressure pair (u, p) in Ωt0 :

V h (Ωt0

)
= span

{
ϕ̂1, . . . , ϕ̂Nu

}
⊂ H1

0

(
Ωt0

)
and

Lh(Ωt0 ) = span
{
φ̂1, . . . , φ̂Np

}
⊂ L2

(
Ωt0

)
,

with Nu and Np being the number of nodal variables for each velocity component and pressure respectively. Then

V h (Ωt) =
{
ϕh : ϕh = ϕ̂h ◦ A−1t , ϕ̂h ∈ V h (Ωt0

)}
,

and

Lh (Ωt) =

{
φh : φh = φ̂h ◦ A−1t , φ̂h ∈ Lh

(
Ωt0

)}
.

Using the backward Euler scheme, Eqs. (25) and (26) can be discretised respectively as follows:

ρ

δt

∫
Ωtn+1

uh
n+1 · v−

ρ

δt

∫
Ωtn

uh
n · v+ ρ

∫
Ωtn+1

(
uh
n+1 · ∇

)
uh
n+1 · v

+ ρI (ξ (τ ))+
µf

2

∫
Ω

f
tn+1

Duh
n+1 : Dv−

∫
Ωtn+1

phn+1∇ · v

+

∫
Ωs

t0

∂Ψ

∂F
(Fn+1) : ∇x̂v =

∫
Ωtn+1

ρg · v,

(28)

and

−

∫
Ωtn+1

q∇ · uh
n+1 = 0. (29)

In the above

ξ (τ ) =
∫

Ωτ

(
w(τ )⊗ uh

n+1

)
: ∇v, (30)

and δtI(ξ ) is a quadrature formula used to compute
∫ tn+1
tn

ξ (τ ). In order to have an unconditionally stable scheme, which
will be proved in Section 5, the mid-point integration is adopted for this term, i.e.:

I (ξ) = ξ
(
tn+1/2

)
(31)

in the two dimensional case, and the Simpson formula is adopted in the three dimensional case:

I (ξ) =
2
ξ
(
tn+1/2

)
+

1
ξ (tn)+

1
ξ (tn+1) . (32)
3 6 6
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Notice that the Simpson formula can also be adopted in the two dimensional case, but the mid-point rule is simpler (and
still of the same order as the temporal discretisation). Due to the definition of the deformation tensor F (14) and ALE
velocity w (4), we have

Fn+1 − Fn
δt

=
Fn+1 ◦ Ftn+1

(
x̂
)
− Fn ◦ Ftn

(
x̂
)

δt
≈ ∇x̂un+1, (33)

and
xn+1 − xn

δt
=

Atn+1

(
x̂
)
− Atn

(
x̂
)

δt
≈ wn+1. (34)

herefore Fn+1 and Ωtn+1 in (28) can be updated as follows:

Fn+1 = Fn + δt∇x̂un+1, (35)

nd

Ωtn+1 = Atn+1

(
Ωt0

)
=
{
x : x = xn + δtwn+1, xn ∈ Atn

(
Ωt0

)}
. (36)

Up to now we have not stated how to construct w (or At ), because very often we only need to construct the ALE
apping At at a discrete time level, that is to say computing Atn+1 for n = 0, 1, . . . at each time step. This will be
xplained in the rest of this section.
We solve the following static linear elastic equation in Ωtn+1 in order to compute wn+1, and take w(t) = wn+1 for
∈ (tn, tn+1]. Given the following boundary data:

wn+1 · n = 0, n · Dwn+1 · t = 0 on ∂Ωtn+1 , (37)

nd

wn+1 = uh
n+1 on Γtn+1 , (38)

ind wn+1 ∈ V h(Ωtn+1 )
d such that ∀z ∈ V h(Ωtn+1 )

d, the following equation holds:

µ

2

∫
Ωtn+1

Dwn+1 : Dz+ λ

∫
Ωtn+1

(∇ ·wn+1) (∇ · z) = 0, (39)

with µ and λ being the Lamé constants used here as pseudo-solid parameters, which may be different from the solid
parameters (Richter and Wick, 2010). It is well known that the above elliptic problem (37) to (39) has a unique solution
w ∈ V h

(
Ωtn+1

)
(Brenner and Scott, 2007) (notice that n·Dwn+1 ·t = 0 on ∂Ωtn+1 should be enforced for the corresponding

DE equation of (39), with t being the tangential direction of ∂Ωtn+1 ). As a result, we are able to construct a mapping for
∈ (tn, tn+1],

Atn,t : Ωtn → Ωt , Atn,t (xn) = xn + (t − tn)wn+1, (40)

nd further

At = A−1t0,t1 ◦ A
−1
t1,t2 · · · ◦ A

−1
tn,t . (41)

rom the computational point of view, knowing the ALE velocity wn+1 at the discrete level is sufficient.
Putting all the above together, the discrete ALE-FSI problem reads:

roblem 2. Given Atn and uh
n = u(Atn

(
x̂
)
, tn), ∀x̂ ∈ Ωt0 find uh

n+1 = u(Atn+1

(
x̂
)
, tn+1) ∈ V h(Ωtn+1 )

d, phn+1 =
p(Atn+1

(
x̂
)
, tn+1) ∈ Lh(Ωtn+1 ), and wn+1 ∈ V h(Ωtn+1 )

d (consequently an ALE mapping Atn+1 by (41)), such that ∀v(x) =
v(Atn+1

(
x̂
)
), v ∈ V h(Ωtn+1 )

d, ∀q(x) = q(Atn+1

(
x̂
)
), q ∈ Lh(Ωtn+1 ) and ∀z ∈ V h(Ωtn+1 )

d, the following equation system holds:

ρ

δt

∫
Ωtn+1

uh
n+1 · v−

ρ

δt

∫
Ωtn

uh
n · v+ ρ

∫
Ωtn+1

(
uh
n+1 · ∇

)
uh
n+1 · v

+ ρI (ξ (τ ))+
µf

2

∫
Ω

f
tn+1

Duh
n+1 : Dv−

∫
Ωtn+1

phn+1∇ · v

−

∫
Ωtn+1

q∇ · uh
n+1 +

∫
Ωs

t0

∂Ψ

∂F
(Fn+1) : ∇x̂v

+
µ

2

∫
Ωtn+1

Dwn+1 : Dz+ λ

∫
Ωtn+1

(∇ ·wn+1) (∇ · z) =
∫

Ωtn+1

ρg · v.

(42)

ith quadrature formula (31) in 2D or (32) in 3D, updating Fn+1 by (35) and updating Ωtn+1 by (36). In addition, the above
SI system equations are completed with the Dirichlet and Neumann boundary conditions (17) for the momentum and
ontinuity equations (28) and (29), and with the boundary conditions (37) and (38) for the mesh equation (39).
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Problem 2 is a highly non-linear system, so we solve it iteratively as described in the following Algorithm 1.

Algorithm 1 Solve Problem 2 for Atn+1 (or wh
n+1), u

h
n+1 and phn+1

Require: Ωtn = Atn

(
Ωt0

)
, uh

n and a tolerance tol
Ensure: Ωt0n+1

= Ωtn , u0
n+1 = uh

n and k = 0
repeat

1. solve the mesh equation (39) for wk+1
n+1 in Ωtkn+1

using boundary conditions (37) and (38) with uk
n+1

2. update Ωtk+1n+1
= Ωtkn+1

+ δtwk+1
n+1 using (36)

3. solve the FSI system (28) and (29) in Ωtk+1n+1
for uk+1

n+1 and pk+1n+1

4. ϵk =
∥uk+1n+1−u

k
n+1∥

∥ukn+1∥
, k← k+ 1

until ϵk < tol

Remark 3. The mesh equation (39) is discretised as a positive definite linear equation system, and we solve it efficiently
using a preconditioned Conjugate Gradient (pCG) method (Nocedal, 1996). The FSI equations (28) and (29) are discretised
as a saddle-point equation system. We use an operator splitting method and efficiently solve a convection and Stokes
problem separately (Wang et al., 2017; Glowinski, 2003). We solve the convection equation using pCG and the Stokes
equation using a preconditioned MinRes algorithm. The preconditioner for CG is an incomplete Cholesky decomposition
of the system matrix, and the preconditioner of MinRes is an incomplete Cholesky decomposition of a modified system
matrix, where the pressure mass matrix replaces the zero pressure block (Elman et al., 2014).

5. Stability analysis

We shall deduce an energy stability result for Problem 2 at the end of this section. In preparation for this we first
prove the following lemmas.

Lemma 1. If (u, p,w) is the solution of Problem 2, then u satisfies the following at t = tn+1.∫
Ωt

(u · ∇)u · u = 0. (43)

Proof. Noticing that∫
Ωt

(u · ∇)u · u =
∫

Ωt

∇ · (u⊗ u) · u−
∫

Ωt

|u|2 ∇ · u, (44)

nd integrating by parts:∫
Ωt

(u · ∇)u · u =
∫

∂Ωt

|u|2 u · n−
∫

Ωt

(u · ∇)u · u−
∫

Ωt

|u|2 ∇ · u.

⇒

∫
Ωt

(u · ∇)u · u =
1
2

∫
∂Ωt

|u|2 u · n−
1
2

∫
Ωt

|u|2 ∇ · u.

(45)

In the above
∫

∂Ωt
|u|2 u ·n = 0, thanks to the enclosed flow u ·n = 0 (17). Using the Sobolev imbedding theorem (Mitrovic

and Zubrinic, 1997, Theorem 6 in Chapter 5), we have H1
⊂ L∞ in the two dimensional case and H1

⊂ L6 in the three
imensional case. Either L∞ or L6 is included in L4 because Ωt has finite measure. Therefore u ∈ H1

⊂ L4 ⇒ |u|2 ∈ L2,
nd
∫

Ωt
|u|2 ∇ · u = 0 thanks to (29). □

emma 2. If (u, p,w) is the solution of Problem 2 then, for any w ∈ V h (Ωt), u satisfies the following at t = tn+1.

ξ (t) ≡
∫

Ωt

(w⊗ u) : ∇u = −
1
2

∫
Ωt

|u|2 ∇ ·w. (46)

Proof. Integrating by parts we get

ξ (t) =
∫

∂Ωt

(w⊗ u)u · n−
∫

Ωt

∇ · (w⊗ u) · u (47)

he boundary integral in (47) is zero due to the enclosed flow u ·n = 0 condition (17). The second term on the right-hand
ide of (47) can be expressed as:∫

∇ · (w⊗ u) · u = ξ (t)+
∫
|u|2 ∇ ·w, (48)
Ωt Ωt
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L

N

2

w

we then have (46) by substituting (48) into (47). □

emma 3. If (un+1, pn+1,wn+1) is the solution of Problem 2, then

∥un+1∥
2
0,Ωtn+1

− ∥un+1∥
2
0,Ωtn
= δtI (η) , (49)

with

η(t) =
∫

Ωt

|un+1|
2
∇ ·w(t), t ∈ (tn, tn+1) . (50)

Proof. Since

η(t) =
∫

Ωtn

JAtn,t |un+1|
2

(
∂A−1tn,t

∂x
∇xn

)
·w(t)

=

∫
Ωtn

|un+1|
2 (CAtn,t∇xn

)
·w(t),

(51)

where CAtn,t is the cofactor matrix of ∂Atn,t
∂x . According to the way we construct Atn,t (40), we know CAtn,t is a polynomial

in time of degree d − 1 (Nobile and Formaggia, 1999), with d = 2, 3 being the space dimension. Also w(t) = wn+1 is a
constant for t ∈ (tn, tn+1], so η(t) is linear in time when d = 2 and quadratic when d = 3, and a mid-point integration
(d = 2) or Simpson formula (d = 3) would exactly compute

∫ tn+1
tn

η(t). This is to say

I (η) =

∫ tn+1

tn
η(t). (52)

oticing that for t ∈ (tn, tn+1),
d
dt

∫
Ωt

|un+1|
2
=

d
dt

∫
Ωtn

JAtn,t |un+1|
2

=

∫
Ωtn

JAtn,t |un+1|
2
∇xw(t) = η(t),

(53)

and using (52), we finally have (49). □

Lemma 4. Define potential energy of the solid:

E (t) =
∫

Ωs
t0

Ψ (F) . (54)

If (un+1, pn+1,wn+1) is the solution of Problem 2 and Ψ (F) is C1 convex on the set of second order tensors (Boffi and Gastaldi,
016), then

δt
∫

Ωs
t0

∂Ψ

∂F
(Fn+1) : ∇x̂un+1 ≥ E (tn+1)− E (tn) . (55)

Proof. Let

w(t) = Ψ (Fn + t (Fn+1 − Fn)) , (56)

then

w′(t) =
∂Ψ

∂F
(Fn + t (Fn+1 − Fn)) : (Fn+1 − Fn) . (57)

Due to the convexity assumption of Ψ (F), we have

w′(1) ≥ w(1)− w(0). (58)

This gives:
∂Ψ

∂F
(Fn+1) : (Fn+1 − Fn) ≥ Ψ (Fn+1)− Ψ (Fn) . (59)

Using (35) we have

δt
∂Ψ

∂F
(Fn+1) : ∇x̂un+1 ≥ Ψ (Fn+1)− Ψ (Fn) . (60)

hich finally leads to (55) by integrating (60) in Ω s . □
t0
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Due to the arbitrariness of v, q and z, we now choose v = uh
n+1, q = −p

h
n+1 and z = 0 in Eq. (42) to deduce the stability

result. Using Lemma 1, we have

ρ

∫
Ωtn+1

uh
n+1 · u

h
n+1 − ρ

∫
Ωtn

uh
n · u

h
n+1

+ δtρI (ξ (t))+
δtµf

2

∫
Ω

f
tn+1

Duh
n+1 : Du

h
n+1

+ δt
∫

Ωs
t0

∂Ψ

∂F
(Fn+1) : ∇x̂uh

n+1 = δt
∫

Ωtn+1

ρg · uh
n+1.

(61)

Combining Lemmas 2 and 3 we have

∥un+1∥
2
0,Ωtn
= ∥un+1∥

2
0,Ωtn+1

− δtI (η) = ∥un+1∥
2
0,Ωtn+1

+ δtI (ξ) . (62)

ubstituting Eq. (62) into the following estimate∫
Ωtn

uh
n · u

h
n+1 ≤ ∥u

h
n∥0,Ωtn ∥u

h
n+1∥0,Ωtn

≤
1
2

(
∥uh

n∥
2
0,Ωtn
+ ∥uh

n+1∥
2
0,Ωtn

)
,

(63)

e get∫
Ωtn

uh
n · u

h
n+1 ≤

1
2

(
∥uh

n∥
2
0,Ωtn
+ ∥uh

n+1∥
2
0,Ωtn+1

+ δtI(ξ )
)

. (64)

Combining (61) and (64), and thanks to Lemma 4 the energy stability result reads:

Proposition 1 (Energy Non-Increasing). Let
(
uh
n+1, p

h
n+1,w

h
n+1

)
be the solution of Problem 2, if there is no body force, then

ρ

2
∥uh

n+1∥
2
0,Ωtn+1

+ E (tn+1)+
δtµf

2

n+1∑
k=1

∫
Ω

f
tk

Duh
k : Du

h
kdx

≤
ρ

2
∥uh

n∥
2
0,Ωtn
+ E (tn)+

δtµf

2

n∑
k=1

∫
Ω

f
tk

Duh
k : Du

h
kdx.

(65)

The above estimate indicate that the total energy, including kinetic energy, potential energy and the viscous dissipation,
f the FSI system is non-increasing.

emark 4. The stability result (Proposition 1) is drawn under assumption of the homogeneous Dirichlet and Neumann
oundary conditions (17), and without any body force. In this enclosed system, we prove that the interactions between
luids and solid in the FSI system is stable. Although the stability is only proved using an enclosed system, this also
rovides a strong indication of stability for other FSI systems if the input energy is stable.

. Implementation: F -scheme and d-scheme

In this section, we focus on the implementation of a specific solid model, which determines the following term∫
Ωs

t0

∂Ψ

∂F
(Fn+1) : ∇x̂v (66)

in Eq. (42). We consider an incompressible neo-Hookean solid model with the energy function Ψ being given as
follows (Hesch et al., 2014b):

Ψ (F) =
c1
2

[
tr
(
FFT

)
− d− 2ln

(
JFt

)]
. (67)

n order to compute the derivative of Ψ with respective to F, we first have[
∂tr

(
FTF

)
∂F

]
mn

=
∂tr

(
FkiFkj

)
∂Fmn

=
∂
∑d

k
∑d

i F
2
ki

∂Fmn

=
∂
(
F 2
11 + F 2

12 + · · · + F 2
dd

)
= 2Fmn.

(68)
∂Fmn
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Let cof (Fij) = (−1)i+1det (F without ith row and jth column ) be the cofactor of Fij. Because of JFt =
∑d

k Fikcof (Fik), we
have ∂ JFt

∂Fij
= cof

(
Fij
)
, i.e,

∂ JFt

∂F
= cof (F) = JFt F

−T . (69)

Combining Eqs. (68) and (69) gives

∂Ψ

∂F
= c1

(
F− F−T

)
. (70)

sing formula (35), the term (66) can then be expressed as:∫
Ωs

t0

∂Ψ

∂F
(Fn+1) : ∇x̂v = c1

∫
Ωs

t0

(
Fn+1 − F−Tn+1

)
: ∇x̂v

= c1

∫
Ωs

t0

Fn+1 : ∇x̂v− c1

∫
Ωs

tn+1

J−1Ft ∇ · v

= c1δt
∫

Ωs
t0

∇x̂un+1 : ∇x̂v+ c1

∫
Ωs

t0

Fn : ∇x̂v− c1

∫
Ωs

tn+1

J−1Ft ∇ · v.

(71)

In the above we update the solid deformation tensor F and integrate in the initial configuration, and we call this
he F-scheme. We can also express the stress in terms of displacement d and integrate in the current configuration as
ntroduced in Hecht and Pironneau (2017), which is called the d-scheme. To deduce the d-scheme, we first transform the
erm (66) to be integrated in the current domain:∫

Ωs
t0

∂Ψ

∂F
(Fn+1) : ∇x̂v =

∫
Ωs

tn+1

J−1Ft

∂Ψ

∂F
FT : ∇v =

∫
Ωs

tn+1

τs
: ∇v, (72)

here

τs
= c1J−1Ft (B− I) (73)

s the deviatoric stress tensor, with B = FFT .
Let us only consider a two dimensional case, readers may refer to Chiang et al. (2017) for the three dimensional case.

ccording to the Cayley–Hamilton theorem, B satisfies its characteristic equation:

B2
− trBB+ J2Ft

I = 0, (74)

rom which we immediately have:

B = trBI− J2Ft
B−1. (75)

ince

F = ∇x̂x = ∇x̂(x̂+ d) = I+ F∇d, (76)

e also have:

F−1 = I−∇d. (77)

ubstituting (75) and (77) into (73), τs can be expressed by displacement as follows:

τs
= −c1JFt (I−∇d)T (I−∇d)+ c1J−1Ft (trB − 1) I, (78)

hich can further be written as

τs
= c1JFt

(
Dd−∇Td∇d

)
+ p̄I, (79)

here p̄ = c1J−1Ft (trB − 1) − c1JFt will be integrated into the solid pressure p in (11) as an unknown. Similarly to the
pdate of F in (35), updating the displacement by

d = d̃ + δtu , d̃ = d ◦ A−1 , (80)
n+1 n n+1 n n tn,tn+1
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Fig. 2. Snapshot of the oscillating disc at t = 0.25 when the disc is maximally stretched, using a time step of ∆t = 0.01.

Fig. 3. Evolution of energy for the oscillating disc using ∆t = 0.01. The peaks of the green curve indicate the time when the disc is maximally
stretched. The first peak is horizontally stretched and the second peak is vertically stretched. The troughs of the green curve are the stress-free
stages. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

leads to the computation of term (66) as follows:∫
Ωs

t0

∂Ψ

∂F
(Fn+1) : ∇x̂v =

∫
Ωs

tn+1

τs
: ∇v

= c1

∫
Ωs

tn+1

(
Ddn+1 −∇

Tdn+1∇dn+1
)
: ∇v

=
c1δt
2

∫
Ωs

tn+1

Dun+1 : Dv+
c1
2

∫
Ωs

tn+1

Dd̃n : Dv

− δtc1

∫
Ωs

tn+1

(
∇

Tun+1∇d̃n +∇
Td̃n∇un+1

)
: ∇v

− c1

∫
Ωs

tn+1

∇
Td̃n∇d̃n : ∇v.

(81)

Note that in the above, the second order term O
(
δt2
)
is neglected and JFt is replaced by 1. The stability of the d-scheme

is proved in Hecht and Pironneau (2017) with the neglection of the term of order O(δt2), which may be regarded as a
further approximation of the F-scheme.

Remark 5. The two and three dimensional F-scheme have exactly the same formulations. This can been seen from Eq. (71),
which does not depend on dimensions. However the formulation of the d-scheme depends on the Cayley–Hamilton
theorem, which is different in two and three dimensions, and consequently leads to significant complexity of the d-scheme
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Fig. 4. Evolution of total energy for the oscillating disc.

n three dimensions (Chiang et al., 2017). It should be noted however that an advantage of the d-scheme is that, because it
omputes all integrals in the current domain, it is more straight forward to handle remeshing when it is required (Hecht
nd Pironneau, 2017).

emark 6. Notice that Eq. (80) is a backward-Euler approximation for displacement d rather than velocity u. This choice
s consistent with the overall first-order time discretisation. The mid-point rule is another choice, however the overall
cheme is still first order, because the update of domain Ωt is not straightforward to compute to second order (Pironneau,
2016a; Hecht and Pironneau, 2017).

7. Numerical experiments

In this section, we assess the reliability and stability of the proposed numerical scheme through a selection of
benchmarks in the FSI area. We shall use the Taylor–Hood elements for the velocity–pressure pair. We validate the energy
stability expressed by (65) in Section 7.1. We validate the proposed scheme against a FSI problem with a semi-analytic
solution in Section 7.2. Time and mesh convergence tests are carried out in Section 7.3, and an example with very large
solid deformation is tested in Section 7.4. The F-scheme will be adopted in all the following numerical tests. In addition,
the d-scheme is also implemented for tests in Sections 7.1 and 7.4 in order to compare the two schemes.

We use the following consistent units for all the numerical tests in this section: length (m), time (s) , velocity (m/s),
acceleration (m/s2), mass (kg), force (N), pressure/stress (N/m2), density (kg/m3) and viscosity (N · s/m2).

.1. Oscillating disc

In this test, we consider an enclosed flow (n ·u = 0) in Ω = [0, 1]× [0, 1] with a periodic boundary condition. A solid
isc is initially located in the middle of the square Ω and has a radius of 0.2. The initial velocity of the fluid and solid are
rescribed by the following stream function

Ψ = Ψ0 sin(ax) sin(by),

here Ψ0 = 5.0 × 10−2 and a = b = 2π . In this test, ρ f
= 1, µf

= 0.01, ρs
= 1.5 and c1 = 1. Taking the maximum

nitial velocity 2πΨ0 = Û and the height of domain Ω , Ĥ = 1, as the characteristic velocity and length respectively, the
eynolds number is: Re = ρf ŪH̄

µf = 10π . A mesh size of 3217 elements with 13081 nodes is used in this test. In order to
isualise the flow a snapshot (t = 0.25) of the velocity and pressure field are presented in Fig. 2, and the evolution of
nergy is presented in Figs. 3 and 4 from which we can observe the property of non-increasing total energy as proved in
roposition 1.
The F-scheme and d-scheme are compared using this example and we have not found any significant difference by

omparing the solid deformation as shown in Fig. 5.

.2. Rotating disc

This test is taken from Hecht and Pironneau (2017). The computational domain is the area between two concentric
ircles (R0 and R1) as shown in Fig. 6, with fluid and solid properties as ρ f

= 1, ρs
= 2, µf

= 2 and c1 = 4. A constant
ngular velocity (ω = U/R1 = 0.6) is prescribed at the outer boundary and the velocity on the inner boundary is set
o be zero. Taking the value of velocity U and length R as references, the Reynolds number is: Re = ρf UR1 = 7.5. This
1 µf
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Fig. 5. Comparison of disc shape for the F-scheme and d-scheme at t = 0.25 when the disc is maximally stretched.

Fig. 6. Sketch of a rotating disc in Section 7.2.

Fig. 7. Evolution of the velocity norm for the reduced one-dimensional rotating disc.

elocity first induces the fluid, that is initially at rest, to rotate and then gradually drags the solid to rotate as well. For
long-term run, the solid disc will oscillate, and its velocity will finally be damped to 0 as shown in Fig. 7. However, in
his paper we are interested in time t = 0.85 when the solid has its largest deformation. Using the property of symmetry,
this problem can be reduced to a one-dimensional equation when considered in a polar coordinate system (r , θ ) (Hecht
and Pironneau, 2017):

ρ f ∂uθ
=

µf ∂
(
r
∂uθ

)
− µf uθ

2 , R ≤ r < R1 (82)

∂t r ∂r ∂r r
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Fig. 8. Comparison between the proposed approach and the semi-analytic solution at t = 0.85 when the solid is maximally deformed.

Fig. 9. Convergence of L2 error.

and

ρs ∂uθ

∂t
=

c1
r

∂

∂r

(
r
∂dθ

∂r

)
− c1

dθ

r2
,

∂dθ

∂t
= uθ , R0 < r ≤ R, (83)

here ur and uθ are the velocity components in the radial and tangential directions respectively. This one-dimensional
roblem (82) and (83) can be solved numerically to high accuracy, and the solution is plotted in Fig. 7 using 200 linear
lements and ∆t = 1.0 × 10−3. Using the same time step, which is stable, the proposed method can produce results
f similar accuracy to the semi-analytic solution (i.e. the high-accuracy numerical solution of (82) and (83)), as shown
n Fig. 8. We use three different meshes to test convergence of the proposed algorithm. A coarse mesh equally divides
he radial direction of the computational domain into 4 segments, and equally divides the tangential direction into to 40
egments, which therefore has 4 × 40 = 160 biquadratic elements. The medium and fine meshes are refined based on
he coarse mesh, which have 8× 80 = 640 and 16× 160 = 2560 elements respectively. Due to the discontinuity in the
erivative at the fluid–solid interface, we only achieve an O(h) convergence as shown in Fig. 9, where h is the mesh size.
his observation is consistent with the result in Hecht and Pironneau (2017).

.3. Oscillating flag

In this section, we consider an oscillating flag attached to a cylinder, which was firstly proposed in Turek and Hron
2006) (named FSI3), and been regarded as a challenging numerical test in the FSI field. We test the time and mesh
onvergence for the proposed FSI method. The computational domain is a rectangle (L × H) with a cut hole of radius r
nd centre (c, c) as shown in Fig. 10. A leaflet of size l× h is attached to the boundary of the hole (the mesh of the leaflet
s fitted to the boundary of the hole, see the solid mesh in Fig. 11). In this test, L = 2.5, H = 0.41, l = 0.35, h = 0.02,
= 0.2 and r = 0.05. The fluid and solid parameters are as follows: ρ f

= ρs
= 103, µf

= 1 and c = 2.0× 106. Taking
1
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Fig. 10. Computational domain and boundary conditions for the oscillating flag.

Fig. 11. A snap shot of the velocity norms att = 6 using a coarse mesh.

Fig. 12. Vertical displacement at the flag tip as a function of time, using different time step and a medium mesh (data of the red curve is plotted
up to t = 5 for a better visualisation of the blue curve). (For interpretation of the references to colour in this figure legend, the reader is referred
o the web version of this article.)

Fig. 13. Vertical displacement at the flag tip as a function of time, using different mesh size and a time step size of ∆t = 5× 10−4 .

¯ =
∫ H
0 ūxdy = 2H and the channel height H as the characteristic velocity and length respectively, the Reynolds number

s: Re = ρf ŪH
µf = 336.2. The inlet flow is prescribed as:

ūx =
12y
H2 (H − y) , ūy = 0. (84)

A wall boundary condition and the outlet flow condition are displayed in Fig. 10. A coarse mesh has 10054 nodes
and 2448 biquadratic elements as shown in Fig. 11, and a medium and fine mesh have 33746 nodes (8320 elements)
and 68974 nodes (17081 elements) respectively. We study the oscillating frequency and amplitude at the tip of the
flag. The convergence with respect to time and space are displayed in Figs. 12 and 13 respectively, and the period and
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a

Fig. 14. Sketch of the falling disc.

Fig. 15. Initial mesh for the falling disc.

mplitude of the oscillation converge to 5.26×10−3 and 0.0018±0.0365 respectively. These figures have a good agreement
with the reference values given in Turek and Hron (2006) with oscillation period and amplitude being 5.3 × 10−3 and
0.00148± 0.03438 respectively.

7.4. Falling disc

In this test, we simulate a falling disc due to gravity (Zhang and Gay, 2007; Hesch et al., 2014b), which needs remeshing
in order to guarantee the mesh quality. However we will demonstrate that one needs much less remeshing, using the
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Fig. 16. Comparison between the numerical and empirical velocity of the falling disc.

roposed ALE methods, compared to methods using pure remesh in order to fit the fluid–solid interface (Hecht and
ironneau, 2017). This test is implemented using FreeFEM++ (Hecht, 2012).
The computational domain is a vertical channel with a disc placed at the top of the channel as illustrated in Fig. 14,

here W = 4, H = 12, h = 2 and R = 1. In this test, ρ f
= 1, ρs

= 1.5 µf
= 0.1, c1 = 104 and the gravity acceleration

s g = −9.81. The fluid velocity is fixed to be 0 on all boundaries except the top, which uses the zero-normal-stress
oundary condition, i.e. σn = 0. Notice that we choose c1 sufficiently large so that the solid behaves as a rigid body. The
omputational domain is initially discretised by using 820 P2/P1 triangles with 1713 nodes as shown in Fig. 15. We use a
table time step size of δt = 0.01 and remesh every 100 times. We compare the simulation result against the empirical
olution of a rigid ball falling in a viscous fluid (Hesch et al., 2014a), for which the maximal velocity Um under gravity is
iven by

Um =

(
ρs
− ρ f

)
gR2

4µf

[
ln
(
W
2R

)
− 0.9157+ 1.7244

(
2R
W

)2

− 1.7302
(
2R
W

)4
]

.

n the test Um = 1.2263. Taking this final velocity Um and the disc radius R as the characteristic velocity and length
espectively, the Reynolds number is: Re = ρf UmR

µf = 12.263. The numerical and the empirical solutions agree well with
ach other when disc becomes stable as shown in Fig. 16. It can be understood that the disc velocity gradually decreases
hen it is close to the bottom of the channel. The evolution of the disc is displayed in Fig. 17. If we move the mesh by

luid velocity without the proposed ALE techniques, and remesh to guarantee the mesh quality then, for this example,
e find that remeshing has to be taken at least every 7 time steps, otherwise the disc cannot successfully arrive at the
ottom of the channel. We have also compared the F-scheme and d-scheme using this numerical test, and found that
hey presented very similar results (hence the latter are not shown in the figures here).

. Conclusion

In this paper, we develop the one-field finite element method for Fluid–Structure Interaction (FSI), which only solves
ne-velocity field in the whole domain. We formulate the FSI system in an Arbitrary Lagrangian–Eulerian (ALE) coordinate
ystem, solve it in a fully-coupled manner, and prove this ALE-FSI formulation is unconditionally stable by analysing the
otal energy of the whole system. The stability result is achieved by expressing the problem in a conservative form, and
dopting an exact quadrature rule in order to eliminate the mesh velocity. Several numerical tests are presented in order
o validate the proposed scheme, including testing the energy stability, validating against a semi-analytical solution and a
enchmark case, and combining with a remeshing technique to simulate the case of extremely large solid displacement.
The stability proofs given in this manuscript are restricted to the case where the backward Euler scheme is applied in

ime. We expect the forward Euler scheme to be conditionally stable but potentially with much more restrictive time-step
ize than in the implicit case. We have not analysed the use of other implicit time-discretisation schemes, such as BDF2 or
rank–Nicolson, since these add significant complexity to the problem. In particular, as with all ALE schemes, the stability
epends critically on the unknown mesh velocities, which makes the analysis very challenging in these higher order cases.
We test a variety of numerical examples, including a strong non-linear FSI problem such as the oscillating flag in test

.3, which is regarded as a challenging benchmark in the FSI field, In none of the test cases that we have considered have
e observed any instabilities.
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o

Fig. 17. Evolution of the falling disc, with colour showing the velocity norm. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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