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In this article, the energy stability of a one-field fictitious domain method is proved and 
validated by numerical tests in two and three dimensions. The distinguishing feature of this 
method is that it only solves for one velocity field for the whole fluid-structure domain; 
the interactions remain decoupled until solving the final linear algebraic equations. To 
achieve this the finite element procedures are carried out separately on two different 
meshes for the fluid and solid respectively, and the assembly of the final linear system 
brings the fluid and solid parts together via an isoparametric interpolation matrix between 
the two meshes. The weak formulations are introduced in the continuous case and after 
discretization in time. Then the stability is analyzed through an energy estimate. Finally, 
numerical examples are presented to validate the energy stability properties.

© 2019 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Fluid-Structure Interaction (FSI) problems are common in many areas. For most FSI problems, analytical solutions of 
the controlling equations are impossible to obtain, whereas laboratory experiments are complex, expensive and limited in 
scope. Therefore, numerical simulations play an important role in order to understand the fundamental physics involved in 
the complex interaction between fluids and structures.

In a previous study [21], we present a one-field Fictitious Domain Method (FDM) which only solves for one velocity 
field and one pressure field in the whole domain, based upon the finite element interpolation. This one-field FDM approach 
is related to the Immersed Finite Element Method (IFEM) but differs in at least one important respect: the classical IFEM 
does not solve the solid equation [22–24,27,28]. Instead, the solid information is arranged on the right-hand side of the 
fluid equation as a prescribed force. The one-field FDM solves the solid equation together with the fluid equation in one 
discretized linear algebraic system. The similarity is that both methods only solve for velocity and pressure fields (no 
solid displacement). Other FDM techniques exist but are typically based upon the use of a Discrete Lagrange Multiplier 
(DLM): such methods [2,4,9,11,12,26] solve the solid equation, but for a displacement field, and couple this displacement 
with the velocity of the fictitious fluid via a Lagrange multiplier. This leads to a large discretized linear algebra system. 
The one-field FDM rewrites the solid equation in terms of a velocity variable and couples the fictitious fluid through a 
finite element interpolation. Monolithic Eulerian methods [10,16] also express the solid equation in terms of velocity, and 
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the fluid and solid are coupled naturally on an interface-fitted mesh. The one-field FDM uses two meshes to represent 
the fluid and solid respectively, and the FEM isoparametric interpolation is adopted to transfer information between the 
two meshes. Consequently, before discretization in space, these two methods have many similarities, the advantage of the 
one-field FDM being that interface fitting is not required. We find that the advantages of using the FEM interpolation 
function are: improved accuracy compared with methods such as the discrete delta function or RKPM (Reproducing Kernel 
Particle Method); effective interpolation of the velocity field through the use of quadratic elements; and effectively capturing 
the density jumps when using a lumped mass matrix.

There are also other Eulerian formulations for FSI problems: [13] uses the level set method to capture the fluid-structure 
interface, and a Lagrangian multiplier and penalty method to couple the fluid and solid. [6,7,17,18,25] use an Initial Points 
Set to capture the fluid-structure interface. After getting the position of the interface, [6,17,18,25] use a characteristic func-
tion to smooth stress and velocity across the interface. Alternatively [7,8] modify the local finite elements in order to 
capture jumps sharply, and [19,20] use an XFEM-like method to enrich the shape functions locally in order to capture the 
discontinuity.

The main developments in this paper, following from [21], are as follows. The exact energy-preserving property in the 
continuous case is proved. The energy-stability property after time discretization is proved, and the same property is also 
proved after spatial discretization. The implementation in this paper is based on an F-scheme, i.e., the solid deformation 
tensor F is updated (see section 4), while the previous paper uses a σ -scheme (see equation (29) in [21]). The methodology 
and analysis is demonstrated to extend to the three-dimensional case.

The paper is organized as follows. Control equations and weak formulation are introduced in section 2 and 3 respectively. 
The time discretized weak form is then presented in section 4. Stability of the proposed scheme is analyzed in section 5. 
Space discretization is discussed in section 6. Numerical examples are given in section 7, and conclusions are presented in 
section 8.

2. Control equations

In the following context, � f
t ⊂ R

d and �s
t ⊂ R

d with d = 2, 3 denote the fluid and solid domain respectively which are 
time dependent regions as shown in Fig. 1. � = �

f
t ∪ �s

t is a fixed domain (with outer boundary �) and �t = ∂�
f
t ∩ ∂�s

t is 
the moving interface between fluid and solid. We denote by X the reference (material) coordinates of the solid, by x = x(·, t)
the current coordinates of the solid, and by x0 the initial coordinates of the solid.

Let ρ, μ, u, p, σ denote the density, viscosity, velocity, pressure and stress tensor respectively. We assume both an in-
compressible fluid and incompressible solid, then the conservation of momentum and conservation of mass take the same 
form as follows:

Momentum equation:

ρ
du

dt
= ∇ · σ . (1)

Continuity equation:

∇ · u = 0. (2)

An incompressible Newtonian constitutive equation in � f can be expressed as:

σ = σ f = μ f Du f − p f I, (3)

where Du = ∇u +∇T u. We shall consider an incompressible viscous neo-Hookean solid in �s
t [4], in which case the Cauchy 

stress tensor is composed of an elastic part and a viscous part:

σ = σ s = σ s
e + σ s

v , (4)

with

σ s
e = c1 J−1

(
FFT − I

)
− psI, (5)

and

σ s
v = μsDus. (6)

In the above, F = ∂x
∂X = ∂x

∂x0

∂x0
∂X =∇0x∇Xx0 is the deformation tensor of the solid, and J = detF is the determinant of F. Finally 

the system is complemented with the following boundary and initial conditions.

u f = us on �t , (7)

nsσ f = nsσ s on �t, (8)
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Fig. 1. Schematic diagram of FSI, � = �
f
t ∪ �s

t . (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

u f = 0 on �, (9)

u f
∣∣∣
t=0

= u f
0 , (10)

us
∣∣
t=0 = us

0. (11)

Other boundary conditions are possible on � but (9) are used here for simplicity.

Remark 1. It may be possible to absorb the term −c1 J−1 into ps as well (see [4]). In this case, the solid is not stress free, 
and one creates a jump of the pressure across the fluid-solid interface if the fluid is stress free. This does not matter if 
the discontinuity of pressure can be exactly captured, such as an interface-fitted method with discontinuous element for 
pressure. However, for the interface-unfitted methods, adopted in this paper, it is wiser to include −c1 J−1 in the constitutive 
equation. In this case, the corresponding energy function for the hyperelastic stress in (4) is defined by [11]:

�(F) = c1

2

(
trFFT − d

) − c1ln( J ). (12)

Remark 2. In the continuous case J = 1 exactly holds for an incompressible material, therefore the term ln( J ) is zero in 
(12). However for the numerical methods using two meshes, J = 1 cannot be guaranteed. Furthermore, the energy function 
(12) is also consistent with the constitutive equation (5). Notice that the following energy function and constitutive equation 
are consistent with each other:

�(F) = c1

2

(
trFFT − d

)
, (13)

and

σ s
e = c1 J−1FFT − psI. (14)

3. Weak formulation

The finite element weak form discussed in this section is almost the same as that in [21], the only difference is that 
we integrate the solid stress in the reference domain, because we shall update the deformation tensor (F-scheme) rather 
than the solid stress as done in [21] (σ -scheme). In the following context, let L2(ω) be the square integrable functions in 
domain ω, endowed with norm ‖u‖2

0,ω = ∫
ω |u|2 (u ∈ L2(ω)). Let H1(ω) = {

u : u,∇u ∈ L2(ω)
}

with the norm denoted by 
‖u‖2

1,ω = ‖u‖2
0,ω + ‖∇u‖2

0,ω . We also denote by H1
0(ω) the subspace of H1(ω) whose functions have zero values on the 

boundary of ω, and denote by L2
0(ω) the subspace of L2(ω) whose functions have zero mean value.

Let p =
{

p f in � f

ps in �s
t

. Given v ∈ H1
0(�)d , we perform the following symbolic operations:

∫
�

f
t

Eq. (1) · vdx +
∫
�s

t

Eq. (1) · vdx.

Integrating the stress terms by parts, the above operations, using constitutive equation (3) and (4) and boundary condi-
tion (8), gives:

ρ f
∫

du

dt
· vdx + μ f

2

∫
Du : Dvdx −

∫
p∇ · vdx
� � �
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+ μδ

2

∫
�s

t

Du : Dvdx + ρδ

∫
�s

t

du

dt
· vdx (15)

+ c1

∫
�s

t

J−1
(

FFT − I
)

: ∇vdx = 0,

where ρδ = ρs − ρ f and μδ = μs − μ f . Note that the integrals on the interface �t are cancelled out using boundary 
condition (8). This is not surprising because they are internal forces for the whole FSI system considered here.

Transforming the integral of the last two terms of (15) to the reference coordinate system, combined with the following 
symbolic operations for q ∈ L2(�),

−
∫

�
f
t

Eq. (2)qdx −
∫
�s

t

Eq. (2)qdx,

leads to the weak form of the FSI system as follows.

Problem 1. Given u0 and �s
0, find u(t) ∈ H1

0(�)d , p(t) ∈ L2
0(�) and �s

t , such that for ∀v ∈ H1
0(�)d , ∀q ∈ L2(�), the following 

two equations hold:

ρ f
∫
�

∂u

∂t
· vdx + ρ f

∫
�

(u · ∇) u · vdx

+ μ f

2

∫
�

Du : Dvdx −
∫
�

p∇ · vdx

+ ρδ

∫
�s

X

du

dt
· vdX + μδ

2

∫
�s

t

Du : Dvdx

+ c1

∫
�s

X

F : ∇XvdX − c1

∫
�s

t

J−1∇ · vdx = 0,

(16)

and

−
∫
�

q∇ · udx = 0. (17)

In the above, d(·)
dt is the time derivative with respect to a frame moving with the solid velocity us = u|�s

t
.

4. Discretization in time

We use the backward Euler method to discretize Problem 1, and update coordinates of the solid by xn+1 = xn + 	tun+1. 
As a result, F is updated by Fn+1 = Fn + 	t∇Xun+1, and so,∫

�s
X

Fn+1 : ∇Xv =
∫
�s

X

Fn : ∇Xv + 	t

∫
�s

X

∇Xun+1 : ∇Xv. (18)

Using equation (18), the discretized weak form corresponding to Problem 1 may be expressed as:

Problem 2. Given un , pn and �s
n , find un+1 ∈ H1

0(�)d , pn+1 ∈ L2
0(�) and �s

n+1, such that for ∀v ∈ H1
0 (�)d , ∀q ∈ L2(�), the 

following four relations hold:

ρ f
∫
�

un+1 − un

	t
· vdx + ρ f

∫
�

(un+1 · ∇) un+1 · vdx

+ μ f

2

∫
Dun+1 : Dvdx −

∫
pn+1∇ · vdx
� �
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+ ρδ

∫
�s

X

un+1 − un

	t
· vdX + μδ

2

∫
�s

n+1

Dun+1 : Dvdx (19)

+ c1	t

∫
�s

X

∇Xun+1 : ∇XvdX

− c1

∫
�s

n+1

J−1
n+1∇ · vdx = −c1

∫
�s

X

Fn∇XvdX,

−
∫
�

q∇ · un+1dx = 0, (20)

�s
n+1 = {

x : x = xn + 	tun+1,xn ∈ �s
n

}
, (21)

and

Fn+1 = Fn + 	t∇Xun+1. (22)

A fixed-point iteration will be used at each time step to construct �s
n+1 implicitly.

5. Stability by energy estimate

5.1. Energy conservation in the continuous case

In this section we shall prove that the weak forms (16) and (17), associated with Problem 1, preserve energy.

Lemma 3. The energy function � (F) for the hyperelastic stress satisfies:

c1

t∫
0

∫
�s

X

F : ∇XudX − c1

t∫
0

∫
�s

t

J−1∇ · udx =
∫
�s

X

�(F)dX. (23)

Proof. Since ∂trFFT

∂F = 2F and ∂(detF)
∂F = detFF−T . Using the fact that A : B = trABT (A and B are arbitrary matrices), we have:

d

dt

∫
�s

X

�(F)dX =
∫
�s

X

∂�

∂F
: dF

dt
dX

=c1

∫
�s

X

(
F − F−T

)
: d

dt
(I + ∇Xd)dX

=c1

∫
�s

X

F : ∇XudX − c1

∫
�s

t

J−1∇ · udx,

where d is displacement of the solid at time t . �
Lemma 4. If (u, p) is the solution pair of Problem 1, then∫

�

(u · ∇) u · udx = 0. (24)

Proof. First,∫
�

(u · ∇) u · udx =
∫
�

∇ (u ⊗ u) · udx −
∫
�

|u|2 ∇ · udx. (25)

Integrate by parts:
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∫
�

∇ (u ⊗ u) · udx =
∫
�

|u|2 u · n −
∫
�

(u · ∇) u · udx. (26)

According to a Sobolev imbedding theorem [14, Theorem 6 in Chapter 5] and the inclusion between Lp spaces (Lq ⊂ Lp if 
p < q), we know H1(�) ⊂ L4(�) (for both 2D and 3D). Therefore u ∈ L4(�), i.e., 

∫
�

|u|4dx < ∞. That is to say |u|2 ∈ L2(�). 
Then we have 

∫
�

|u|2 ∇ · u = 0 from (17). We also have 
∫
�

|u|2 u · n = 0 from the boundary condition (9). Substituting these 
two equations into (25) and (26) gives equation (24). �
Proposition 5 (Energy Conservation). Let (u, p) be the solution pair of Problem 1, then

ρ f

2

∫
�

|u|2dx + μ f

2

t∫
0

∫
�

Du : Dudx + μδ

2

t∫
0

∫
�s

t

Du : Dudx

+ ρδ

2

∫
�s

X

|u|2dX +
∫
�s

X

�(F)dX = 0.

(27)

Proof. We first let v = u in (16) and integrate from time 0 to t , then let q = p in (17) and substitute into (16). Finally we 
can construct the above equation of energy balance due to Lemma 3 and 4. �
5.2. Stability analysis after time discretization

We next demonstrate a similar energy stability result for Problem 2.

Lemma 6. The trace function 1
2 tr

(
FFT

)
satisfies:

1

2
tr

(
Fn+1FT

n+1

)
− 1

2
tr

(
FnFT

n

)
= 	tFn+1 : ∇Xun+1 − 	t2

2
|∇Xun+1|2 , (28)

where |A|2 = ∑
i j a2

i j for an arbitrary matrix A = [
aij

]
.

Proof.

Fn+1FT
n+1 − FnFT

n

=Fn+1FT
n+1 − (Fn+1 − 	t∇Xun+1) (Fn+1 − 	t∇Xun+1)

T

=	tFn+1∇T
X un+1 + 	t∇Xun+1FT

n+1 − 	t2∇Xun+1∇T
X un+1.

Lemma 6 holds due to

1

2
tr

(
Fn+1FT

n+1 − FnFT
n

)
= 	t · tr

(
Fn+1∇T

X un+1

)
− 	t2

2
|∇Xun+1|2 . �

Lemma 7. The log-determinant function ln (detF) satisfies:

ln(detFn+1) − ln(detFn) ≥ 	t∇ · un+1 − 	t2

2

∣∣∣F−1
n+1∇Xun+1

∣∣∣2
.

Proof. Use the fact that function ln(detY) is concave over the set of positive definite matrices [5, Chapter 3]. Let B = FFT , 
F(B) = 1

2 ln (detB) = ln (detF) and w(ξ) =F (Bn + ξ (Bn+1 − Bn)), then

w ′(ξ) = dF
dB

: (Bn+1 − Bn) = 1

2
(Bn + ξ (Bn+1 − Bn))

−1 : (Bn+1 − Bn) .

According to the property of concave functions, we have w(1) − w(0) ≥ w ′(1), this is to say:
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ln(detFn+1) − ln(detFn) = F (Bn+1) −F (Bn)

≥1

2
B−1

n+1 : (Bn+1 − Bn) = 1

2
tr

(
I − B−1

n+1Bn

)
=1

2
tr

(
I − B−1

n+1 (Fn+1 − 	t∇Xun+1)
(

FT
n+1 − 	t∇T

X un+1

))
=	t

2
tr

(
F−T

n+1∇T
X un+1 + F−T

n+1F−1
n+1∇Xun+1FT

n+1

)

−	t2

2
tr

(
F−T

n+1F−1
n+1∇Xun+1∇T

X un+1

)

=	t∇ · un+1 − 	t2

2

∣∣∣F−1
n+1∇Xun+1

∣∣∣2
.

In the above, we use the trace property of cyclic permutations: tr (A1A2A3) = tr (A2A3A1) = tr (A3A1A2). �
From the above two lemmas, we have:

Proposition 8. The energy function � (F) for the hyperelastic stress satisfies:∫
�s

X

�(Fn+1)dX −
∫
�s

X

�(Fn)dX

≤ 	tc1

∫
�s

X

Fn+1 : ∇Xun+1dX − 	tc1

∫
�s

n+1

J−1
n+1∇ · un+1dx + Rn+1,

(29)

where

Rn+1 = c1	t2

2

∫
�s

X

(∣∣∣F−1
n+1∇Xun+1

∣∣∣2 − |∇Xun+1|2
)

dX. (30)

Similarly to Lemma 4, we have:

Lemma 9. If (un+1, pn+1) is the solution pair of Problem 2, then∫
�

(un+1 · ∇) un+1 · un+1dx = 0. (31)

Proposition 10 (Energy stable). If ρδ ≥ 0, let (un+1, pn+1) be the solution pair of Problem 2, then

ρ f

2

∫
�

|un+1|2 dx + ρδ

2

∫
�s

X

|un+1|2 dX +
∫
�s

X

�(Fn+1)dX

+ 	tμ f

2

n+1∑
k=1

∫
�

Duk : Dukdx + 	tμδ

2

n+1∑
k=1

∫
�s

n+1

Duk : Dukdx

≤ ρ f

2

∫
�

|un|2 dx + ρδ

2

∫
�s

X

|un|2 dX +
∫
�s

X

�(Fn)dX

+ 	tμ f

2

n∑
k=1

∫
�

Duk : Dukdx + 	tμδ

2

n∑
k=1

∫
�s

n+1

Duk : Dukdx + Rn+1,

(32)

where Rn+1 is defined in equation (30).

Proof. Let v = un+1 in (19) and multiply 	t on both side of the equation, and then let q = pn+1 in (20) and substitute into 
equation (19), we get:
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ρ f
∫
�

(un+1 − un) · un+1dx + 	tμ f

2

∫
�

Dun+1 : Dun+1dx

+ ρδ

∫
�s

X

(un+1 − un) · un+1dX + 	tμδ

2

∫
�s

n+1

Dun+1 : Dun+1dx

+ c1	t

∫
�s

X

Fn+1 : ∇Xun+1dX − c1	t

∫
�s

n+1

∇ · un+1dx = 0.

(33)

Using the Cauchy-Schwarz inequality and the fact ab ≤ a2+b2

2 , we have:

∫
ω

un · un+1dx ≤ ‖un‖0,ω ‖un+1‖0,ω ≤ ‖un‖2
0,ω + ‖un+1‖2

0,ω

2
,

where ω = � or �s
n+1. Substituting the above relation into (33), we get (32) due to Proposition 8 and Lemma 9. �

Remark 3. Relation (32) does not exactly show energy nonincreasing, because we do not know whether Rn+1 is greater or 
less than 0. However, Rn+1 is O  

(
	t2

)
and so in the worst possible case any growth in the energy is bounded by a term 

whose magnitude is smaller than the order of the error and which may be controlled easily and efficiently. Furthermore, 
it will be demonstrated through numerical tests in section 7 that this term has no identifiable impact for practical choices 
of time step. In order to test the energy property, let us use the following notation for the different contributions to the 
total energy in (32): (1) Kinetic energy of fluid plus fictitious fluid Ek(�) = ρ f

2

∫
�

|un|2 dx; (2) Kinetic energy of solid minus 

fictitious fluid Ek(�
s
X) = ρδ

2

∫
�s

X
|un|2 dX; (3) Viscous dissipation Ed(�) = 	tμ f

2

∑n
k=0

∫
�

Duk : Dukdx + 	tμδ

2

∑n
k=0

∫
�s

n+1
Duk :

Dukdx; (4) Potential energy of the solid E p(�s
X) = ∫

�s
X
� (Fn)dX. Denote the total energy at as Etotal = Ek(�) + Ek(�

s
X) +

Ed(�) + E p(�s
X), and the energy ratio as:

Eratio = Etotal(tn)

Etotal(t0)
. (34)

We shall numerically demonstrate that Eratio is nonincreasing in section 7.

6. Discretization in space

We shall use a fixed Eulerian mesh for � and an updated Lagrangian mesh for �s
n+1 to discretize Problem 2. First, we 

discretize � as �h with the corresponding finite element spaces as

V h(�h) = span {ϕ1, · · · ,ϕNu } ⊂ H1
0 (�)

and

Lh(�h) = span {φ1, · · · , φN p } ⊂ L2
0 (�) .

The approximated solution uh and ph can be expressed in terms of these basis functions as

uh(x) =
Nu∑
i=1

u(xi)ϕi(x), ph(x) =
N p∑
i=1

p(xi)φi(x). (35)

We further discretize �s
0 as �sh

0 with the corresponding finite element spaces as:

V sh(�sh
0 ) = span

{
ϕs

1, · · · ,ϕs
Ns

} ⊂ H1 (
�s

0

)
,

then move the vertices of each element of �sh
n by their own velocities to get �sh

n+1, and approximate uh(x)
∣∣
x∈�sh

n+1
as:

ush (x) =
Ns∑

i=1

uh(xs
i )ϕ

s
i (x) =

Ns∑
i=1

Nu∑
j=1

u(x j)ϕ j(xs
i )ϕ

s
i (x), (36)

where xs
i is the nodal coordinate of the solid mesh. Notice that the above approximation defines an L2 projection Pn+1 from 

V h
(
�h

)d
to V sh

(
�sh

)d
: Pn+1

(
uh(x)

) = ush (x).
n+1
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We then discretize Problem 2 in space as follows.

Problem 11. Given uh
n , ph

n and �sh
n , find uh

n+1 ∈ V h(�h)d , ph
n+1 ∈ Lh(�h) and �sh

n+1, such that for ∀v ∈ V h(�h)d , ∀q ∈ Lh(�h), 
the following four relations hold:

ρ f
∫
�h

uh
n+1 − uh

n

	t
· vdx + ρ f

∫
�h

(
uh

n+1 · ∇
)

uh
n+1 · vdx

+ μ f

2

∫
�h

Duh
n+1 : Dvdx −

∫
�h

ph
n+1∇ · vdx

+ ρδ

∫
�sh

X

ush
n+1 − ush

n

	t
· vsdX + μδ

2

∫
�sh

n+1

Duh
n+1 : Dvdx (37)

+ c1	t

∫
�sh

X

∇Xush
n+1 : ∇XvsdX

− c1

∫
�sh

n+1

J−1
n+1∇ · vsdx = −c1

∫
�sh

X

Fsh
n : ∇XvsdX,

−
∫
�

q∇ · uh
n+1dx = 0, (38)

�sh
n+1 =

{
x : x = xn + 	tush

n+1,xn ∈ �sh
n

}
, (39)

and

Fsh
n+1 = Fsh

n + 	t∇Xush
n+1, (40)

where ush = Pn+1
(
uh

)
and vs = Pn+1 (v).

Remark 4. The proof of the energy estimate (Proposition 10) for the spatially continuous case can also be applied to the 
discrete case (see Appendix A).

Remark 5. There are two sources of nonlinearity in Problem 11: the convection term and the moving solid domain. We can 
accommodate these by moving the convection term to the right-hand side of the equation, and using a fixed-point iteration 
to construct �s

n+1 in order to solve the nonlinear system at each time step. For other methods to treat convection, readers 
may refer to [15,29]. We shall only use this fully implicit implementation to consider low Reynolds number cases in this 
paper in order to test the energy stability.

Remark 6. A two-step explicit splitting scheme (F-scheme) is discussed in Appendix B with corresponding energy analysis. 
This scheme is similar to that in [21] (σ -scheme), which may be adapted to problems at large Reynolds number (see [21]
for more examples).

7. Numerical experiments

In this section, we focus on validation of the energy stability of the proposed numerical method in two and three 
dimensions. For more two-dimensional numerical examples and validation of the basic algorithm see [21]. We shall use 
linear triangles (2D) or linear tetrahedra (3D) to discretize the solid domain �s

0 . In domain �, the P2/(P1 + P0) elements 
will be used, i.e., the standard T aylor-Hood element P2 P1 is enriched by a constant P0 for approximation of the pressure. 
This element has the property of local mass conservation and the constant P0 may better capture the element-based jump of 
pressure [1,3]. We shall demonstrate the improvement of mass conservation and energy conservation by using the P2/(P1 +
P0) elements compared to the P2 P1 elements. We shall also validate that the total energy is nonincreasing as stated in 
Proposition 10 and Remark 3.
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Fig. 2. Snapshot at t = 0.25, 	t = 5.0 × 10−3.

Fig. 3. Evolution of energy, 	t = 5.0 × 10−3.

7.1. Oscillating disc driven by an initial kinetic energy (activated disc)

In this test, we consider an enclosed flow (n · u = 0) in � = [0, 1] × [0, 1] with a periodic boundary condition. A solid 
disc is initially located in the middle of the square � and has a radius of 0.2. The initial velocity of the fluid and solid are 
prescribed by the following stream function

� = �0sin(ax)sin(by),

where �0 = 5.0 × 10−2 and a = b = 2π . In this test, ρ f = 1, μs = μ f = 0.01, ρs = 1.5 and c1 = 1. In order to visualize the 
flow a snapshot of the velocity and deformation fields is presented in Fig. 2, and the evolution of energy is presented in 
Fig. 3 using a 50 × 50 mesh (biquadratic squares for the fluid velocity and 3052 bilinear triangles for the solid velocity).

We commence by comparing P2/P1 elements and P2/(P1 + P0) elements. The evolution of mass variation and energy 
ratio are demonstrated in Fig. 4, from which it can be seen that the enrichment of the pressure field by a constant P0
has an effect of stabilizing the mass and energy evolution. In addition, this enrichment of the pressure field dramatically 
improves the mass conservation, although the effect for energy conservation appears to be negative. Then using element 
P2/(P1 + P0), time convergence of the total energy can be observed from Fig. 5 (a), from which we can see a nonincreasing 
energy and a first order time convergence for both the implicit and explicit scheme (see Appendix B for the energy estimate 
of the explicit scheme). It can be seen from Fig. 5 (b) that the residual term defined in (30) is very small and converges 
rapidly to zero when reducing 	t (∼ O (	t2)).

7.2. Oscillating disc driven by an initial potential energy (stretched disc)

In the previous example, the disc oscillates because a kinetic energy is prescribed for the FSI system at the beginning. 
In this test, we shall stretch the disc and create a potential energy in the solid, then release it causing the disc to oscillate 
due to this potential energy. The computational domain is a square � = [0, 1] × [0, 1]. One quarter of a solid disc is located 
in the left-bottom corner of the square, and initially stretched as an ellipse as shown in Fig. 6. Notice the equation of an 
ellipse x2

a2 + y2

b2 = 1 and its area πab, hence we ensure that this stretch does not change mass of the solid.

We choose ρ f = 1, μs = μ f = 0.01, ρs = 2 and c1 = 2. The fluid adopts a mesh of 66 × 66 biquadratic squares, and the 
solid has similar node density (8206 linear triangles) as the fluid. A snapshot of pressure on the fluid mesh and correspond-
ing solid deformation with its velocity norm are displayed in Fig. 7, and the evolution of energy is presented in Fig. 8. The 
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Fig. 4. Variation of mass and energy, 	t = 5.0 × 10−3.

Fig. 5. Evolution of the energy ratio and residual Rn for the test problem of activated disc.

Fig. 6. Computational domain and boundary conditions for test Problem 7.2 (stretched disc).

nonincreasing total energy can be observed from Fig. 9 (a) for both the implicit and explicit scheme (see Appendix B for 
energy estimate of the explicit scheme). It can be seen from Fig. 9 (b) that the residual term defined in (30) is very small 
and converges rapidly to zero when reducing 	t .

7.3. Rotating cross driven by an initial kinetic energy (rotating cross)

In this test, we consider an enclosed flow in � = [−0.5, 0.5] × [−0.5, 0.5] with a slip boundary condition (n · u = 0). 
A solid cross, made up of two 0.1 × 0.5 rectangles as shown in Fig. 10 (a), is initially located in the middle of the square 



176 Y. Wang et al. / Applied Numerical Mathematics 140 (2019) 165–182
Fig. 7. A snapshot at t = 1, 	t = 5.0 × 10−3.

Fig. 8. Evolution of energy, 	t = 5.0 × 10−3.

Fig. 9. Evolution of the energy ratio and residual Rn for the test problem of stretched disc.

domain �, with the centre pinned at the origin for all time. A rotating velocity field is initially prescribed to the fluid and 
solid as follows:

u = Uτ , U = 4r(r0 − r)/r2
0, r =

√
x2 + y2, τ = (−y, x) /r, (41)

where r0 = 0.5 and (x, y) ∈ �.
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Fig. 10. Solid crosses displayed when they are maximally deformed according to the potential energy shown in Fig. 11.

Fig. 11. Potential energy for three different stiffnesses of the solid.

We use the same fluid properties as used in the activated disc (section 7.1). In addition, we also use the same solid 
properties but extend the parameter c1 to three different cases: c1 = 1, 10 and 100, in order to investigate the response of 
the FSI system according to the solid stiffness. We use 50 × 50 P2/(P1 + P0) elements to discretize the background fluid 
domain, and 3600 structured linear triangles (see Fig. 10) to discretize the solid cross. A small time step of 	t = 5.0 × 10−4

is used for all the three cases, and the deformed solids are presented in Fig. 10. It can be seen from these figures that the 
solid already behaves like a rigid body when c1 = 100. The evolution of the total energy is also presented in Fig. 12, from 
which it can be seen that the total energy is non-increasing for the three different solid cases.
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Fig. 12. Evolution of the energy ratio (defined in (34)) for the test problem of rotating cross.

Fig. 13. Velocity norm at t = 0.2.

7.4. Oscillating ball driven by an initial kinetic energy

In this section, we consider a 3D oscillating ball, which is an extension of the example in section 7.1. The ball is initially 
located at the centre of � = [0, 1] × [0, 1] × [0, 0.6] with a radius of 0.2. Using the property of symmetry this computation 
is carried out on 1/8 of domain �: [0, 0.5] × [0, 0.5] × [0, 0.3]. The initial velocities of x and y components are the same as 
that used in section 7.1 and the z component is set to be 0 at the beginning. We adopt the same parameter and mesh size 
defined in section 7.1 (with the same mesh size in the z direction). A snapshot of the 1/8 solid ball and the corresponding 
fluid velocity norm are presented in Fig. 13, and the nonincreasing energy property is presented in Fig. 14.

8. Conclusions

In this article, we first introduce an implicit version of [21] for the one-field fictitious domain method (one-field FDM) 
based upon updating the solid deformation tensor F. Then the energy-preserving property for this one-field FDM is proved 
on the continuous level, and the energy-stability property is proved after discretization in time and space. The energy 
property for an explicit scheme is also analyzed in Appendix B. Finally, a selection of numerical tests are presented to 
demonstrate this theoretical energy estimate in both two and three dimensions.

Whilst the purpose of this paper is to analyse the stability of the computational scheme introduced in [21], we also 
briefly comment on the computational efficiency relative to the immersed finite element method. For those problems where 
the IFEM scheme works best (e.g. soft viscoelastic solids with identical viscosity to the surrounding fluid) we find our im-
plementation of the one-field FD method is only marginally slower (no more than 1% in the experiments that we have 
undertaken). However, we find that the one-field FDM is far more robust that the IFEM, which means that for most 
problems it is able to solve in a significantly shorter computational time: including cases where the IFEM is unable to 
converge.
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Fig. 14. Evolution of the energy ratio (defined in (34)) for the test problem of oscillating ball.

Appendix A. Stability analysis after space discretization

As with the previous stability estimate (Proposition 10) after time discretization, we have the following estimate after 
space discretization.

Proposition 12. If ρδ ≥ 0, let 
(
uh

n+1, ph
n+1

)
be the solution pair of Problem 11, then

ρ f

2

∫
�h

∣∣∣uh
n+1

∣∣∣2
dx + ρδ

2

∫
�sh

X

∣∣∣ush
n+1

∣∣∣2
dX +

∫
�sh

X

�
(

Fsh
n+1

)
dX

+ 	tμ f

2

n+1∑
k=1

∫
�h

Duh
k : Duh

kdx + 	tμδ

2

n+1∑
k=1

∫
�sh

n+1

Dush
k : Dush

k dx

≤ ρ f

2

∫
�h

∣∣∣uh
n

∣∣∣2
dx + ρδ

2

∫
�sh

X

∣∣∣ush
n

∣∣∣2
dX +

∫
�sh

X

�
(

Fsh
n

)
dX

+ 	tμ f

2

n∑
k=1

∫
�h

Duh
k : Duh

kdx + 	tμδ

2

n∑
k=1

∫
�sh

n+1

Dush
k : Dush

k dx + Rh
n+1,

(A.1)

where

Rh
n+1 = c1	t2

2

∫
�sh

X

(∣∣∣∣(Fsh
n+1

)−1 ∇Xush
n+1

∣∣∣∣
2

−
∣∣∣∇Xush

n+1

∣∣∣2
)

dX. (A.2)

Proof. Let v = uh
n+1 in (37) and multiply 	t on both side of the equation, and then let q = ph

n+1 in (38) and substitute into 
equation (37), we get:

ρ f
∫
�h

(
uh

n+1 − uh
n

)
· uh

n+1dx + 	tμ f

2

∫
�h

Duh
n+1 : Duh

n+1dx

+ ρδ

∫
�sh

X

(
ush

n+1 − ush
n

)
· ush

n+1dX + 	tμδ

2

∫
�sh

n+1

Duh
n+1 : Duh

n+1dx

+ c1	t

∫
�sh

Fsh
n+1 : ∇Xush

n+1dX − c1	t

∫
�sh

∇ · ush
n+1dx = 0.

(A.3)
X n+1
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Using the Cauchy-Schwarz inequality and the fact ab ≤ a2+b2

2 , we have:

∫
ω

un · un+1dx ≤ ‖un‖0,ω ‖un+1‖0,ω ≤ ‖un‖2
0,ω + ‖un+1‖2

0,ω

2
,

where ω = �h or �sh
n+1. Notice that Lemma 6 to 9 still hold after space discretization, then substituting the above relation 

into (A.3) gives (A.1). �
Remark 7. In relation (A.1), the velocity ush = Pn+1

(
uh

)
(after interpolation) is used to evaluate (or define) the energy terms 

for the solid. Therefore the interpolation error itself does not appear in the estimate relation (A.1). The energy estimate of 
Proposition 12 is an indication of solution stability and existence of Problem 11, which requires iterations in order to 
construct the current domain �sh

n+1 and build the interpolation function Pn+1. If the iterations can be proved to converge 
(interpolation error appears here), then the solution existence for Problem 11 is proved. At the moment we have estimated 
the energy as demonstrated in Proposition 12, the solution existence may be proved based on this energy estimate in our 
future work.

Appendix B. Energy estimate for a two-step explicit splitting scheme

In this section, we analyze the energy property for the 2-step explicit splitting scheme introduced in [21], which can be 
stated as follows (corresponding to the implicit Problem 11):

Problem 13. Given uh
n , ph

n and �sh
n , find uh

n+1 ∈ V h(�h)d , ph
n+1 ∈ Lh(�h) and �sh

n+1, such that for ∀v ∈ V h(�h)d , ∀q ∈ Lh(�h), 
the following 5 relations hold:

(1) convention step:

ρ f
∫
�h

uh
n+1/2 − uh

n

	t
· vdx + ρ f

∫
�h

(
uh

n+1/2 · ∇
)

uh
n+1/2 · vdx = 0, (B.1)

(2) diffusion step:

ρ f
∫
�h

uh
n+1 − uh

n+1/2

	t
· vdx + μ f

2

∫
�h

Duh
n+1 : Dvdx

−
∫
�h

ph
n+1∇ · vdx + ρδ

∫
�sh

X

ush
n+1 − ush

n

	t
· vsdX

+ c1	t

∫
�sh

X

∇Xush
n+1 : ∇XvsdX + μδ

2

∫
�sh

n+1

Duh
n+1 : Dvdx

− c1

∫
�sh

n

J−1
n ∇n · vsdx = −c1

∫
�sh

X

Fsh
n : ∇XvsdX,

(B.2)

−
∫
�

q∇ · uh
n+1dx = 0, (B.3)

�sh
n+1 =

{
x : x = xn + 	tush

n+1,xn ∈ �sh
n

}
, (B.4)

and

Fsh
n+1 = Fsh

n + 	t∇Xush
n+1, (B.5)

where ush = Pn+1
(
uh

)
, vs = Pn+1 (v), and ∇n(·) = ∂(·)

∂xn
.

As with the previous analysis for the implicit scheme, if we let v = uh
n+1 in equations (B.1), (B.2) and (B.3), adding up 

these three equations, using (B.5) and ush = Pn+1
(
uh

)
, gives the energy estimate as follows.
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Proposition 14. If ρδ ≥ 0, let (un+1, pn+1) be the solution pair of Problem 13, then

ρ f

2

∫
�h

∣∣∣uh
n+1

∣∣∣2
dx + ρδ

2

∫
�sh

X

∣∣∣uh
n+1

∣∣∣2
dX +

∫
�sh

X

�
(

Fsh
n+1

)
dX

+ 	tμ f

2

n+1∑
k=1

∫
�h

Duh
k : Duh

kdx

≤ ρ f

2

∫
�h

∣∣∣uh
n

∣∣∣2
dx + ρδ

2

∫
�sh

X

∣∣∣uh
n

∣∣∣2
dX +

∫
�sh

X

�
(

Fsh
n

)
dX

+ 	tμ f

2

n∑
k=1

∫
�h

Duh
k : Duh

kdx + Rim
n+1 + Rex

n+1 + Rsplit
n+1,

(B.6)

where Rim
n+1 = Rh

n+1 as defined in (A.2).

Rex
n+1 = c1	t

∫
�sh

X

(
∇n · ush

n+1 − ∇ · ush
n+1

)
dX, (B.7)

and

Rsplit
n+1 = 	tρ f

∫
�h

(
uh

n+1/2 · ∇
)

uh
n+1/2 · uh

n+1dx. (B.8)
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