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a b s t r a c t

In this article we consider the widely used immersed finite element method (IFEM), in
both explicit and implicit form, and its relationship to our more recent one-field fictitious
domain method (FDM). We review and extend the formulation of these methods, based
upon an operator splitting scheme, in order to demonstrate that both the explicit IFEM
and the one-field FDM can be regarded as particular linearizations of the fully implicit
IFEM. However, the one-field FDM can be shown to be more robust than the explicit
IFEM and can simulate a wider range of solid parameters with a relatively large time
step. In addition, it can produce results almost identical to the implicit IFEM but without
iteration inside each time step. We study the effect on these methods of variations in
viscosity and density of fluid and solid materials. The advantages of the one-field FDM
within the IFEM framework are illustrated through a selection of parameter sets for two
benchmark cases.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Three major questions arise when considering a finite element method for the problem of Fluid–Structure Interactions
(FSI): (1) what kind of meshes are used (interface fitted or unfitted); (2) how to couple the fluid–structure interactions
(monolithic/fully-coupled or partitioned/segregated); (3) what variables are solved (velocity and/or displacement). Com-
binations of the answers to these questions lead to different types of numerical method. For example, Degroote et al.
(2009) and Küttler and Wall (2008) solve for fluid velocity and solid displacement sequentially (partitioned/segregated)
using an Arbitrary Lagrangian–Eulerian (ALE) fitted mesh, whereas Heil (2004), Heil et al. (2008) and Muddle et al. (2012)
use an ALE fitted mesh to solve for fluid velocity and solid displacement simultaneously (monolithic/fully-coupled) with
a Lagrange Multiplier to enforce the continuity of velocity/displacement on the interface. The Immersed Finite Element
Method (IFEM) (Peskin, 2002; Wang et al., 2011; Wang and Zhang, 2009, 2013; Zhang and Gay, 2007; Zhang et al., 2004)
and the Fictitious Domain Method (FDM) (Baaijens, 2001; Boffi and Gastaldi, 2016; Glowinski et al., 2001; Hesch et al.,
2014; Kadapa et al., 2016; Yu, 2005) use two meshes to represent the fluid and solid separately. Other techniques, such
as the immersed particle method (Rabczuk et al., 2010; Moutsanidis et al., 2019), represent the solid without the need
for its own mesh, which is convenient to deal with the case of structural failure.

Although IFEM could be monolithic (Boffi et al., 2015), the classical IFEM only solves for velocity, while the solid
information is arranged on the right-hand side of the fluid equation as a prescribed force term. Conversely, although the
FDM may be partitioned (Yu, 2005), usually the FDM approach solves for both velocity in the whole domain (fluid plus
solid) and displacement of the solid simultaneously via a distributed Lagrange multiplier (DLM) to enforce the consistency
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of velocity/displacement in the overlapped solid domain. In the case of one-field and monolithic numerical methods for
FSI problems, Auricchio et al. (2014) introduces a 1D model using a one-field FDM formulation based on two meshes,
and Hecht and Pironneau (2017) and Pironneau (2016) introduces an energy stable monolithic method (in 2D) based on
one Eulerian mesh and discrete remeshing.

In a previous study Wang et al. (2017), we present a one-field monolithic fictitious domain method (subsequently
referred to as the one-field FDM) which has the following main features: (1) only one velocity field is solved in the whole
domain, based upon the use of an appropriate L2 projection; (2) the fluid and solid equations are solved monolithically.
The primary purpose of this paper is to highlight the relationship between the one-field FDM and the IFEM family of
methods: demonstrating that the former is in fact a new variant of the latter which possesses a number of practical
advantages. Before describing these in detail however we briefly provide further context for the one-field FDM based on
comparing its features with those of existing monolithic schemes.

FDM/DLM methods (Baaijens, 2001; Boffi and Gastaldi, 2016; Glowinski et al., 2001; Hesch et al., 2014; Kadapa et al.,
2016; Yu, 2005) solve the solid equation, but for a displacement field, and couple this displacement with the velocity of
the fictitious fluid via a Lagrange multiplier. This leads to a large discrete linear algebra system. The one-field FDM (Wang
et al., 2017; Auricchio et al., 2014) solves a smaller discrete system since it rewrites the solid equation in terms of a velocity
variable and couples the fictitious fluid through a finite element interpolation. Monolithic Eulerian methods (Hecht and
Pironneau, 2017; Pironneau, 2016) also express the solid equation in terms of velocity, and the fluid and solid are coupled
naturally on an interface-fitted mesh. The one-field FDM also uses two meshes to represent the fluid and solid respectively.
Consequently, before discretization in space, these two methods have many similarities, the advantage of the one-field
FDM being that interface fitting is not required.

As discussed above, the primary purpose of this paper is to demonstrate that the proposed one-field FDM is a particular
linearization of the fully implicit IFEM. It is more robust than the classical explicit IFEM, and presents almost the same
accuracy as the implicit IFEM. We will show:

(1) The one-field FDM is based upon the implicit expression of the FSI force. This FSI force term is linearized using
the velocity at the current configuration (instead of displacement at the reference configuration), which is an
approximation of the fully implicit IFEM (Wang, 2006, 2007; Wang et al., 2009) but without requiring a nonlinear
iteration at each time step.

(2) In the simple case of equal density and viscosity for both fluid and solid, the only difference between the one-field
FDM and the explicit IFEM (explicitly expressing the FSI force term) (Wang et al., 2011; Wang and Zhang, 2009,
2013; Zhang and Gay, 2007; Zhang et al., 2004) is that there are some terms of order O(∆t) and O(∆t2) retained in
the former. However these terms have a helpful stabilizing effect, which can allow the one-field FDM to use a time
step that is significantly larger than the explicit IFEM, with almost the same accuracy.

(3) The one-field FDM can naturally deal with the case of different densities and different viscosities in the fluid and
solid.

The paper is organized as follows. The control equations and a general finite element weak formulation are introduced
in Sections 2 and 3 respectively, followed by a dimensionless weak formulation in Section 4 and time discretization in
Section 5. Different types of IFEM approaches are then discussed in Section 6, and their relationship with the weak form
of Section 4 is highlighted. An operator splitting scheme is introduced in Section 7 followed by a comparison between
the IFEM and one-field FDM approaches in Sections 8 and 9. Numerical examples are given in Section 10, and conclusions
are presented in Section 11.

2. Control equations

In the following context, Ω f
t ⊂ Rd and Ω s

t ⊂ Rd with d = 2, 3 denote the fluid and solid domain respectively which are
time dependent regions as shown in Fig. 1. Ω = Ω

f
t ∪ Ω

s
t is a fixed domain (with outer boundary Γ ) and Γt = Ω

f
t ∩ Ω

s
t

is the moving interface between fluid and solid. We denote by X the reference (material) coordinates of the solid, by
x = x(·, t) the current coordinates of the solid, and by x0 the initial coordinates of the solid.

Let ρ, µ,u, σ and g denote the density, viscosity, velocity, stress tensor and acceleration due to gravity respectively.
We assume both an incompressible fluid in Ω

f
t and incompressible solid in Ω s

t . The conservation of momentum and
conservation of mass take the same form in the fluid and solid (just differing in the specific expressions of σ):

Momentum equation:

ρ
du
dt

= ∇ · σ + ρg, (1)

and continuity equation:

∇ · u = 0. (2)

An incompressible Newtonian constitutive equation in Ω
f
t can be expressed as:

σ = σ f
= τ f

− pf I, (3)
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Fig. 1. Schematic diagram of FSI, Ω = Ω
f
t ∪ Ω

s
t , Γt = Ω

f
t ∩ Ω

s
t and Γ = ΓD ∪ ΓN .

where Du = ∇u + ∇
Tu, and

τ f
= µfDuf (4)

is the deviatoric part of stress σ f .
In Ω s

t we consider an incompressible neo-Hookean solid with viscosity µs (Boffi and Gastaldi, 2016; Yu, 2005; Baaijens,
2001) (see appendices for a brief discussion of other solid material models). The constitutive equation may be expressed
as:

σ = σs
= τs

− psI, (5)

with

τs
= c1

(
FFT − I

)
+ µsDus (6)

being the deviatoric part of stress σs, where

F =
∂x
∂X

=
∂x
∂x0

∂x0
∂X

= ∇0x∇Xx0 (7)

is the deformation tensor of the solid, and c1 a solid material parameter. The case of rigid body is excluded in this article,
and the reader is referred to Glowinski et al. (2001) and Hesch et al. (2014) for more details.

Finally the system is completed with the following boundary and initial conditions.
Interface continuity conditions:

uf
= us on Γt (8)

and

σ f ns
= σsns on Γt . (9)

Dirichlet and Neumann boundary conditions:

uf
= ū on ΓD (10)

and

σ f ns
= h̄ on ΓN , (11)

where Γ = ΓD ∪ ΓN . Initial conditions:

uf
⏐⏐
t=0 = uf

0 (12)

and

us
⏐⏐
t=0 = us

0. (13)

In the above, both the boundary value ū and the initial values uf
0 and us

0 should satisfy the continuity equation (2).

3. Weak formulation

In the following context, let L2(ω) be the square integrable functions in domain ω, endowed with norm ∥u∥2
0,ω =

∫
ω

|u|2

(u ∈ L2(ω)). Let H1(ω) =
{
u : u, ∇u ∈ L2(ω)

}
with the norm denoted by ∥u∥2

1,ω = ∥u∥2
0,ω + ∥∇u∥2

0,ω . We also denote by
H1

0 (ω) (or H1
E (ω)) the subspace of H1(ω) whose functions have zero value (or value of ū) on the Dirichlet boundary of ω.
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Let p =

{
pf in Ω

f
t

ps in Ω s
t
. Given v ∈ H1

0 (Ω)d, we perform the following symbolic operations:∫
Ω

Eq. (1) (σ) · v ≡

∫
Ω

f
t

Eq. (1)
(
σ f )

· v +

∫
Ωs

t

Eq. (1)
(
σs)

· v

≡

∫
Ω

Eq. (1)
(
σ f )

· v +

∫
Ωs

t

(
Eq. (1)

(
σs)

− Eq. (1)
(
σ f ))

· v.

Integrating the stress terms by parts, the above operations, using constitutive equation (3) and (5) and interface
condition (9), give:

ρ f
∫

Ω

du
dt

· v +

∫
Ω

τ f
: ∇v −

∫
Ω

p∇ · v

+
(
ρs

− ρ f ) ∫
Ωs

t

du
dt

· v +

∫
Ωs

t

(
τs

− τ f )
: ∇v

=

∫
Ω

ρ f g · v +

∫
Ωs

t

(
ρs

− ρ f ) g · v +

∫
ΓN

h̄ · v.

(14)

Note that the integrals on the interface Γt are cancelled out using boundary condition (9), because they are internal forces
for the whole FSI system. Combining with the following symbolic operations for q ∈ L2(Ω),

−

∫
Ω

f
t

Eq. (2)q −

∫
Ωs

t

Eq. (2)q ≡ −

∫
Ω

Eq. (2)q,

leads to the weak form of the FSI system as follows.
Given u0 and Ω s

0, for each t > 0 find u(t) ∈ H1
E (Ω)d, p(t) ∈ L2(Ω) and Ω s

t , such that ∀v ∈ H1
0 (Ω)d, ∀q ∈ L2(Ω), the

following two equations hold:

ρ f
∫

Ω

∂u
∂t

· v + ρ f
∫

Ω

(u · ∇)u · v +
µf

2

∫
Ω

Du : Dv −

∫
Ω

p∇ · v

+ ρδ

∫
Ωs

t

du
dt

· v +
µδ

2

∫
Ωs

t

Du : Dv + c1

∫
Ωs

t

(
FFT − I

)
: ∇v

=

∫
Ω

ρ f g · v +

∫
Ωs

t

ρδg · v +

∫
ΓN

h̄ · v,

(15)

(where ρδ
= ρs

− ρ f and µδ
= µs

− µf ) and

−

∫
Ω

q∇ · u = 0. (16)

In Eq. (15), d
dt is the time derivative with respect to a frame moving with the solid velocity us

= u|Ωs
t
.

4. Dimensionless weak formulation

We may rewrite the weak form (15) and (16) in a dimensionless form by introducing the following scales (Yu, 2005):
L̃ for length, Ũ for velocity, L̃/Ũ for time and ρ f Ũ2 for pressure p and parameter c1. Dividing by ρ f Ũ3/L̃ on both sides
of Eq. (15), we have:∫

Ω

∂ũ
∂ t̃

· ṽ +

∫
Ω

(
ũ · ∇

)
ũ · ṽ +

1
2Re

∫
Ω

Dũ : Dṽ −

∫
Ω

p̃∇ · ṽ

+
(
ρr

− 1
) ∫

Ωs
t

dũ
dt̃

· ṽ +
µr

− 1
2Re

∫
Ωs

t

Dũ : Dṽ + c̃1

∫
Ωs

t

(
FFT − I

)
: ∇v

= Fr
∫

Ω

g
|g|

· ṽ + Fr
(
ρr

− 1
) ∫

Ωs
t

g
|g|

· ṽ +

∫
ΓN

h̃ · ṽ,

(17)

where ũ = u/Ũ , ṽ = v/Ũ , p̃ = p/ρ f Ũ2, t̃ = tŨ/L̃, h̃ = h̄L̃/ρ f Ũ2 and the following parameters.

• Reynolds number:

Re = ρ f Ũ L̃/µf . (18)

• density ratio:

ρr
= ρs/ρ f . (19)
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• viscosity ratio:

µr
= µs/µf . (20)

• material parameter:

c̃1 = c1/ρ f Ũ2. (21)

• Froude number:

Fr = |g|L̃/Ũ2. (22)

The dimensionless form of Eq. (16) is straightforward by dividing by ρ f Ũ3/L̃:

−

∫
Ω

q̃∇ · ũ = 0, (23)

with q̃ = q/ρ f Ũ2. For the sake of notation convenience, we shall still use u, v, p and q instead of ũ, ṽ, p̃ and q̃ in Eqs. (17)
and (23) in the following context.

5. Discretization in time

Using the backward Euler method to discretize in time, Eqs. (17) and (23) may be discretized as follows:
Given un, pn and Ω s

n, find un+1 ∈ H1
E (Ω)d, pn+1 ∈ L2(Ω) and Ω s

n+1, such that ∀v ∈ H1
0 (Ω)d, ∀q ∈ L2(Ω), the following

two equations hold:∫
Ω

un+1 − un

∆t
· v +

∫
Ω

(un+1 · ∇)un+1 · v

+
1

2Re

∫
Ω

Dun+1 : Dv −

∫
Ω

pn+1∇ · v

+
(
ρr

− 1
) ∫

Ωs
n+1

un+1 − un

∆t
· v +

µr
− 1

2Re

∫
Ωs

n+1

Dun+1 : Dv

+ c̃1

∫
Ωs

n+1

(
FFT − I

)
: ∇v

= Fr
∫

Ω

g
|g|

· v + Fr
(
ρr

− 1
) ∫

Ωs
n+1

g
|g|

· v +

∫
ΓN

h̃ · v,

(24)

and

−

∫
Ω

q∇ · un+1 = 0. (25)

Remark 1. Ω s
n+1 is updated from Ω s

n by the following formula:

Ω s
n+1 =

{
x : x = xn + ∆tun+1, xn ∈ Ω s

n

}
. (26)

6. Implementations of different IFEM approaches

Having introduced the weak formulation and time discretization in the previous sections, we now consider imple-
mentation details, and demonstrate that different choices lead to methods that correspond to existing IFEM schemes, as
well as the proposed one-field FDM (Wang et al., 2017). We can see from (24) that the integrals are carried out over two
different domains: the whole domain Ω and the moving solid domain Ω s

n+1. The IFEM methods compute these two types
of integrals based on two different meshes, and use projection/distribution functions to transfer information between
the two meshes (Baaijens, 2001; Boffi and Gastaldi, 2016; Glowinski et al., 2001; Hesch et al., 2014; Kadapa et al., 2016;
Yu, 2005; Wang et al., 2011; Wang and Zhang, 2009, 2013; Zhang and Gay, 2007; Zhang et al., 2004). The one-field
FDM also adopts two meshes, and uses the FEM interpolation function (also used in Wang and Zhang (2009)) to transfer
information between the two meshes. In the remainder of this section we focus on how different IFEM approaches fit
within the framework of this weak formulation.
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The classical IFEM is introduced in Zhang et al. (2004) and Zhang and Gay (2007), in which all the solid integrals (in
Ω s

n+1) are moved to the right-hand side of Eq. (24) as a force term and evaluated at the previous time step as follows:∫
Ω

un+1 − un

∆t
· v +

∫
Ω

(un+1 · ∇)un+1 · v

+
1

2Re

∫
Ω

Dun+1 : Dv −

∫
Ω

pn+1∇ · v

=
(
1 − ρr) ∫

Ωs
n

un − un−1

∆t
· v −

µr
− 1

2Re

∫
Ωs

n

Dun : Dv

− c̃1

∫
Ωs

n

(
FnFTn − I

)
: ∇v

+ Fr
∫

Ω

g
|g|

· v + Fr
(
ρr

− 1
) ∫

Ωs
n

g
|g|

· v +

∫
ΓN

h̃ · v.

(27)

The above formulation differs from Zhang et al. (2004) and Zhang and Gay (2007) only in the following respects:

(1) The boxed term in (27) vanishes in Zhang et al. (2004) and Zhang and Gay (2007) because the fluid stress within
the solid domain is neglected (which is equivalent to setting µr

= 1).
(2) Zhang et al. (2004) and Zhang and Gay (2007) use the stabilized equal-order finite element method to treat

convection and pressure after discretization in space, while we shall use a splitting scheme to deal with convection
and a stable mixed-order finite element space for the velocity and pressure.

(3) The above formulation is expressed in a dimensionless form.

However these differences are not the distinguishing features of IFEM, and do not influence any comparisons (in Section 10
we show that our implementation of IFEM produces the same results as in the literature). The distinguishing feature of
IFEM is its development from the Immersed Boundary Method (IBM) (Peskin, 2002): the solid information is based on the
previous time step and arranged on the right-hand side of the fluid equation as a force term, which is computed on the
solid mesh, distributed to the fluid mesh and then added to the fluid equation as an extra term.

The IFEM formulation (27) represents an explicit forcing strategy, which approximates the time derivative in the solid
using values from the previous two time steps. Errors may be accumulated as time evolves in this case, and this may
be observed in numerical tests (see, for example, Figs. 6 and 7). There is a semi-implicit formulation which introduces
an indicator function I(x) to smear out the densities across the fluid–solid interface (Wang et al., 2011). Based on this
indicator function I(x) (see Wang et al. (2011) for the definition), the formulation (27) may be modified as follows:(

1 +
(
ρr

− 1
)
I (x)

) ∫
Ω

un+1 − un

∆t
· v +

∫
Ω

(un+1 · ∇)un+1 · v

+
1

2Re

∫
Ω

Dun+1 : Dv −

∫
Ω

pn+1∇ · v

=
1 − µr

2Re

∫
Ωs

n

Dun : Dv − c̃1

∫
Ωs

n

(
FnFTn − I

)
: ∇v

+ Fr
∫

Ω

g
|g|

· v + Fr
(
ρr

− 1
) ∫

Ωs
n

g
|g|

· v +

∫
ΓN

h̃ · v.

(28)

Furthermore, a fully implicit forcing strategy may also be considered as follows:∫
Ω

un+1 − un

∆t
· v +

∫
Ω

(un+1 · ∇)un+1 · v

+
1

2Re

∫
Ω

Dun+1 : Dv −

∫
Ω

pn+1∇ · v

=
(
1 − ρr) ∫

Ωs
n

un+1 − un

∆t
· v −

µr
− 1

2Re

∫
Ωs

n

Dun+1 : Dv

− c̃1

∫
Ωs

n

(
Fn+1FTn+1 − I

)
: ∇v

+ Fr
∫

Ω

g
|g|

· v + Fr
(
ρr

− 1
) ∫

Ωs
n

g
|g|

· v +

∫
ΓN

h̃ · v.

(29)

It can be seen that the force term on the right-hand side of above equation is computed using the velocity at the current
time step, which then needs to be iteratively constructed. This idea of implicit forcing was first utilized in the immersed
boundary method (IBM) (Newren et al., 2007, 2008), and then also adopted within IFEM in Wang (2006, 2007) and Wang
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et al. (2009), where a Newton–Krylov iterative procedure is used to solve this nonlinear system. In our implementation,
for simplicity, we use fixed point iteration to demonstrate the implicit IFEM. The fixed point iteration generally converges
more slowly than the Newton–Krylov method, however it is not our purpose to compare the efficiency of these two
implicit forcing strategies. Instead we shall demonstrate that both the implicit IFEM (iterating at each time step) and the
one-field FDM (which needs no iteration inside the time step) produce almost identical results.

Based upon the above discussion, we next introduce an operator splitting scheme in Section 7. In Section 8 we then
present an explicit and an implicit forcing strategy for IFEM (corresponding to (27) and (29) respectively), and in Section 9
the one-field FDM formulation is illustrated in detail with the proposed operator splitting scheme.

7. An operator splitting scheme

The operator splitting scheme is introduced here in order to treat the non-linear convection term in the Navier–Stokes
equation, and simplify the saddle-point problem, which is widely adopted to solve pure fluid equations (Glowinski, 2003;
Laval and Quartapelle, 1990). The fluid–structure coupling process can still be designed either explicitly or implicitly inside
the diffusion step (as discussed in Sections 8 and 9). In this article, we focus on studying the FSI coupling strategies rather
than different methods to deal with the convection or saddle-point problem.

(1) Convection step:∫
Ω

un+1/3 − un

∆t
· v +

∫
Ω

(
un+1/3 · ∇

)
un+1/3 · v = 0. (30)

(2) Diffusion step:∫
Ω

un+2/3 − un+1/3

∆t
· v +

1
2Re

∫
Ω

Dun+2/3 : Dv

+
(
ρr

− 1
) ∫

Ωs
n

un+2/3 − un

∆t
· v +

µr
− 1

2Re

∫
Ωs

n

Dnun+2/3 : Dnv

+ c̃1

∫
Ωs

n

(
Fn+2/3FTn+2/3 − I

)
: ∇nv

= Fr
∫

Ω

g
|g|

· v + Fr
(
ρr

− 1
) ∫

Ωs
n

g
|g|

· v +

∫
ΓN

h̃ · v.

(31)

In the above, ∇n(·) =
∂(·)
∂xn

and Dn = ∇n + ∇
T
n .

(3) Pressure step:∫
Ω

un+1 − un+2/3

∆t
· v −

∫
Ω

pn+1∇ · v = 0. (32)

and

−

∫
Ω

q∇ · un+1 = 0. (33)

Remark 2. Notice that the variables un+1/3 or un+2/3 are just intermediate values, not the velocity at time t = tn +
∆t
3

or t = tn +
2∆t
3 . The notation Fn+1/3 or Fn+2/3 is interpreted as follows:

Ft =
∂xt
∂X

= ∇X (xn + ut∆t) , (34)

with t = n + 1/3 or n + 2/3.

Remark 3. Compared with the 2-step splitting scheme in our original paper (Wang et al., 2017), this 3-step splitting
scheme decouples the FSI problem and Stokes/saddle-point problem into two separate steps. The fluid and solid are
coupled in the diffusion step, which may be effectively solved by the preconditioned Conjugate Gradient algorithm. The
pressure step becomes a ‘‘degenerate’’ Stokes problem (Glowinski, 2003), which can also be efficiently solved (readers
may refer to (Glowinski, 2003, Section 34) for more discussion). There are a variety of numerical methods to treat the
convection equation (30), such as wave-like methods (Glowinski, 2003), characteristic based schemes (Glowinski, 2003;
Zienkiewic, 2005; Hecht and Pironneau, 2017), upwind schemes (including the Streamline Upwind Petrov Galerkin (SUPG)
method) (Glowinski, 2003; Zienkiewic, 2005) or the Least-squares method (Zienkiewic, 2005). In our implementations we
primarily use this latter approach.

It can be seen that the fluid–structure interaction only occurs in the diffusion step (31) based upon this operator
splitting scheme. In order to solve equation (31) the one-field FDM and IFEM use different strategies. In the following
two sections we focus on this diffusion step, and present the differences between the one-field FDM, and IFEM strategies.
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8. Explicit and implicit forcing

For notational convenience let us define the following force term:

FFSI
t =

(
ρr

− 1
) ∫

Ωs
n

ut − un

∆t
· v +

µr
− 1

2Re

∫
Ωs

n

Dnut : Dnv

+ c̃1

∫
Ωs

n

(
FtFTt − I

)
: ∇nv,

(35)

where t = n + 1/3 or n + 2/3 as in Remark 2.
Based upon the splitting scheme adopted here, we use un+1/3, obtained from the previous convection step, to evaluate

FFSI
t , and solve equation (31) as follows.

• Explicit forcing:∫
Ω

un+2/3 − un+1/3

∆t
· v +

1
2Re

∫
Ω

Dnun+2/3 : Dnv

= Fr
∫

Ω

g
|g|

· v + Fr
(
ρr

− 1
) ∫

Ωs
n

g
|g|

· v +

∫
ΓN

h̃ · v − FFSI
n+1/3 .

(36)

As noted above, expression (36) corresponds to a formulation of the classical explicit IFEM. The implicit IFEM may be
expressed in a similar form, based upon the splitting scheme, but using the current value un+2/3 to construct FFSI

n+2/3.

• Implicit forcing:∫
Ω

un+2/3 − un+1/3

∆t
· v +

1
2Re

∫
Ω

Dnun+2/3 : Dnv

= Fr
∫

Ω

g
|g|

· v + Fr
(
ρr

− 1
) ∫

Ωs
n

g
|g|

· v +

∫
ΓN

h̃ · v − FFSI
n+2/3 .

(37)

Remark 4. It can be seen from expression (35) that the third term in FFSI
t will reduce when reducing time step ∆t ,

because the deformation tensor F → I as ∆t → 0. However, in the case of ρr
̸= 1 and/or µf

̸= 1 the first two terms
in FFSI

t may not approach to zero as ∆t → 0. Conversely, the first term may increase when reducing ∆t . As a result,
reducing the time step does not guarantee reducing the FSI force, which is true for both the explicit and the implicit
forcing schemes. Consequently, instability may occur when ρr

̸= 1 and/or µf
̸= 1 no matter how small the time step is.

In this case, one can seek other techniques to stabilize the IFEM methods, such as using the Reproducing Kernel Particle
Method (RKPM) (Zhang et al., 2004), rather than the FEM interpolation function utilized in this article, to interpolate
across two or more element widths, although this could reduce accuracy (Wang and Zhang, 2009). However, we shall not
focus on discussion of the interpolation functions in this article, instead we will show in the following numerical results
in Section 10 that using the one-field FDM can avoid this instability.

9. One-field FDM

It can be seen that the solid velocity is hidden in the nonlinear term FFT − I in Eq. (24) or (31). The difference between
the one-field FDM and the explicit IFEM is how to treat this nonlinear term: the former extracts this hidden velocity by
linearizing FFT − I in the current configuration, while the latter evaluates this term as a force term on the right-hand side
of the equation. In this section, we shall demonstrate how the nonlinear term FFT − I is linearized in the one-field FDM,
and expressed in terms of velocity in the current configuration. Also notice that this idea is not limited to the operator
splitting. The splitting is just a specific implementation that allows us to express the IFEM and the one-field FDM in a
similar form so as to facilitate direct comparison with each other.

Denoting FtFTt − I by st , and according to the definition of F (7), st may be computed as follows:

st = FtFTt − I =
(
∇Xxt∇T

Xxt − I
)
. (38)

Using the chain rule, this last equation can also be expressed as:

st = ∇nxt∇Xxn∇T
Xxn∇

T
n xt − I + ∇nxt∇T

n xt − ∇nxt∇T
n xt (39)

or

st = ∇nxt∇T
n xt − I + ∇nxt

(
∇Xxn∇T

Xxn − I
)
∇

T
n xt . (40)

Then st can be expressed based on the previous coordinate xn as follows:

st = ∇nxt∇T
n xt − I + ∇nxtsn∇T

n xt . (41)
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Using xt = xn + ∆tut (see Remark 2 (34)), the last equation can finally be expressed as:

st = ∆t
(
∇nut + ∇

T
nut + ∆t∇nut∇

T
nut

)
+ sn

+ ∆t2∇nutsn∇T
nut + ∆t∇nutsn + ∆tsn∇T

nut .
(42)

There are two nonlinear terms in the last equation, which may be linearized as

∇nut∇
T
nut ≈ ∇nut∇

T
nun + ∇nun∇

T
nut − ∇nun∇

T
nun, (43)

and

∇nutsn∇T
nut ≈ ∇nutsn∇T

nun + ∇nunsn∇T
nut − ∇nunsn∇T

nun. (44)

Substituting sn+2/3 = Fn+2/3FTn+2/3 − I, using expression (42), (43) and (44), into diffusion step (31), we finally get the
one-field FDM formulation as follows:∫

Ω

un+2/3 − un+1/3

∆t
· v +

1
2Re

∫
Ω

Dun+2/3 : Dv

+
(
ρr

− 1
) ∫

Ωs
n

un+2/3 − un

∆t
· v +

µr
− 1

2Re

∫
Ωs

n

Dnun+2/3 : Dnv

+
∆tc̃1
2

∫
Ωs

n

Dnun+2/3 : Dnv + ∆tc̃1

∫
Ωs

n

D1
nun+2/3 : ∇nv

+ ∆t2c̃1

∫
Ωs

n

(
D2

n + D3
n

)
un+2/3 : ∇nv

= Fr
∫

Ω

g
|g|

· v + Fr
(
ρr

− 1
) ∫

Ωs
n

g
|g|

· v +

∫
ΓN

h̃ · v

− c̃1

∫
Ωs

n

sn : ∇nv + ∆t2c̃1

∫
Ωs

n

(
∇nun∇

T
nun

)
: ∇nv

+ ∆t2c̃1

∫
Ωs

n

(
∇nunsn∇T

nun
)

: ∇nv .

(45)

In the above, the linear operators D1
n, D

2
n and D3

n are defined as:

D1
nu = ∇nusn + sn∇T

nu, (46)

D2
nu = ∇nu∇

T
nun + ∇nun∇

T
nu, (47)

and

D3
nu = ∇nusn∇T

nun + ∇nunsn∇T
nu. (48)

Remark 5. When ρr
= µr

= 1, comparing Eqs. (36) and (45), we see that the only difference between the one-field
FDM and explicit IFEM is the additional boxed terms in Eq. (45) of O(∆t) or O(∆t2) respectively. We shall demonstrate,
with numerical tests, that these terms are not trivial at all: in fact they have a very positive stabilizing effect, such that a
significantly larger time step may be adopted.

10. Numerical experiments

Having analysed the proposed one-field FDM, and illustrated its close relationship with the IFEM family of methods,
in this section we focus on validation of the three advantages, as claimed in Section 1, of the one-field FDM compared
with IFEM. We shall use the Least-squares method to approximate the convection step (Wang et al., 2017). This is an
appropriate method for lower Reynolds number flow, and we have solved cases for Reynolds number up to 500. For the
diffusion step in which FSI interaction happens, we use the finite element isoparametric interpolation functions to transfer
information between the solid mesh and fluid mesh for both the one-field FDM and IFEM. The finite element interpolation
function is suggested to be capable of producing sharper interfaces than the traditional discretized Dirac delta function
or the reproducing kernel function in Wang and Zhang (2009). The pressure step is a ‘‘degenerate’’ Stokes equation, and
we shall use the standard Taylor-Hood element to discretize this step. Gravity will not be considered in this paper, so the
Froude number (22) will be zero (Fr = 0) in each of the following tests.
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Fig. 2. Computational domain and boundary conditions for the test problem of a lid-driven cavity flow with a solid disc.

Fig. 3. Distribution of the velocity norm for Parameter set 1 at t = 10. The position of the solid in the cavity can be seen from Fig. 4 (d).

Table 1
Parameter sets for lid-driven cavity flow with a solid disc (the first parameter set is used in Zhao et al. (2008) and
Wang and Zhang (2009)).
Parameter sets Re c̃1 ρr µr

Parameter 1 100 0.1 1 1
Parameter 2 100 1 1 1
Parameter 3 100 1 2 1
Parameter 4 100 1 0.5 1
Parameter 5 100 1 1 1.5
Parameter 6 100 1 1 2
Parameter 7 500 0.5 2 2

10.1. Lid-driven cavity flow with a solid disc

This example is taken from papers Zhao et al. (2008) and Wang and Zhang (2009), in which IFEM approaches are
adopted. A sketch of the problem and boundary conditions are shown in Fig. 2. We consider the parameter sets displayed
in Table 1, and all the simulations use a sufficiently small time step to ensure stability: parameter set 1 (very soft solid)
uses ∆t = 1.0 × 10−3 and all other tests have a time step of ∆t = 5.0 × 10−3. To illustrate the meshes that we use,
velocity norms on the fluid mesh (40 × 40 biquadratic quadrilaterals) and solid mesh (1373 linear triangles with 771
nodes) for Parameter set 1 are presented in Fig. 3.

For all these tests, we aim to run to t = 10. However for the Parameter sets 3 to 5 (ρr
̸= 1 or µr

̸= 1), our
implementation of the implicit IFEM scheme cannot reach t = 10 (see Remark 4 for a possible reason). Therefore, in these
cases, we show a comparison shortly before the IFEM breaks down. The following criterion is used to check whether the
implicit IFEM converges.

error =
∥uk+1 − uk∥Ωs

n

∥uk∥Ωs
n

< tol, (49)
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Fig. 4. Solid deformation for Parameter set 1. These results are identical to Fig. 10 in Wang and Zhang (2009). The figures show that the one-field
FDM and the explicit IFEM present the same results in the case of ρr

= µr
= 1. The l2 norm of velocity vectors on the solid mesh at t = 10:

∥uIFEM∥ = 4.80955, ∥uFDM∥ = 4.80087 and ∥uIFEM − uFDM∥ = 0.07399.

Fig. 5. Solid deformation for Parameter set 2 at t = 10. The l2 norm of displacement vectors on the solid mesh: ∥dexIFEM − dFDM∥ = 0.13423 and
∥dimIFEM − dFDM∥ = 0.12248.

where uk and uk+1 are the iterative values of the last and current step respectively, and tol = 10−6 is the convergence
tolerance used in our tests.

The first two parameter sets are simple cases because ρr
= µr

= 1. We can see from Fig. 4 that the one-field FDM and
the explicit IFEM present almost identical results in the case of a very soft solid (c̃1 = 0.1), both of which are themselves
indistinguishable from the published results in the literature (Wang and Zhang, 2009). Fig. 5 shows the solid deformation
for a slightly harder disc (c̃1 = 1). Although the explicit IFEM, implicit IFEM and the one-field FDM present very similar
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Fig. 6. Solid deformation for Parameter set 3 at t = 4.4.

Fig. 7. Solid deformation for Parameter set 4 at t = 5.0. The result of the one-field FDM is identical to the result of the implicit IFEM.

results, a close look at the interface shape shows that the solution of the one-field FDM is closer to that of the implicit
IFEM than the explicit IFEM.

The case of a larger solid density (ρr
= 2) and a smaller solid density (ρr

= 0.5) are tested by Parameter sets 3 and 4
respectively. Both results (Figs. 6 and 7) show that the one-field FDM and the fully converged implicit IFEM have almost
the same accuracy. Furthermore, in neither IFEM case do the results converge up to t = 10 when using the same time step
as the one-field FDM: ∆t = 5.0 × 10−3. The explicit IFEM uses velocities from the previous two time steps to compute
the effect of the solid: it can be seen from Fig. 6 that the disc moves more slowly using this explicit IFEM. We also note
that reducing the time step cannot solve the problem in this case, because the temporal term in the FSI force FFSI

t (35)
becomes huge and has a negative effect on the stability. Fig. 7 demonstrates similar problems for the explicit IFEM, but
the disc using the explicit IFEM moves faster than the one-field FDM or the implicit IFEM.

Remark 6. As noted in Remark 4, reducing the time step ∆t may not cure the instability problem induced by the large
FSI force (35), although using a higher order scheme of time discretization might be able to improve this situation.
However, it is challenging to update the solid in a high-order manner (Pironneau, 2016), and we leave this topic for
further investigation.

Parameter sets 5 (µr
= 1.5) and 6 (µr

= 2) are included to show the case of different viscosities between fluid and
solid. It can be seen from Fig. 8 that the results of the one-field FDM and the implicit IFEM match very well. Using the
selected time step, our IFEM implementations break down after the first few time steps when testing Parameter set 6,
therefore we only show the results of the one-field FDM in Figs. 9 and 10 (as future test cases for others to validate
against).
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Fig. 8. Solid deformation for Parameter set 5 at t = 4.2. The result of the one-field FDM is identical to the result of the implicit IFEM.

Fig. 9. Distribution of the velocity norm for Parameter set 6 at t = 5, using the one-field FDM. The disc arrives at top of the cavity.

Fig. 10. Distribution of the velocity norm for Parameter set 6 at t = 10, using the one-field FDM.

We purposely choose Parameter set 7 to be difficult, with large Reynolds number and differences in viscosity and
density between fluid and solid. The one-field FDM can stably run up to t = 10. We show the result in Fig. 11 when the
solid disc arrives at the top of the cavity.
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Fig. 11. Distribution of the velocity norm for Parameter set 7 at t = 7.4, using the one-field FDM. The disc arrives at top of the cavity.

Fig. 12. Computational domain and boundary conditions for the oscillating leaflet.

Table 2
Parameter sets for the oscillating leaflet in a channel.
Parameter sets Re c̃1 ρr µr

Parameter 1 100 1000 1 1
Parameter 2 100 1000 1.2 1
Parameter 3 300 10000 2 2

Remark 7. Notice that we have not considered the case of µr < 1, because we find that all the three methods (one-field
FDM, explicit IFEM and implicit IFEM) may be unstable when ∆t → 0. However we shall not discuss this stability issue
in more detail here as it is not the primary purpose of this paper. Please refer to Wang et al. (2019) and Wang (2018) for
stability analysis.

10.2. Oscillating leaflet in a channel

This numerical example is taken from Yu (2005), Baaijens (2001) and Kadapa et al. (2016), and the purpose of this
test is to demonstrate that the one-field FDM can use a much larger time step than the explicit IFEM, while achieving the
same accuracy. The computational domain is a channel of dimension L × H , with a leaflet of dimension h × w initially
located across the channel at its midpoint as shown in Fig. 12. A periodic flow condition is prescribed on the inlet and
outlet boundaries, given by

ūx = 1.5y (2 − y) sin (2π t/T ) , ūy = 0, (50)

with T being the dimensionless period of the input flow and equal to 10. In this test, L = 4, H = 1, h = 0.8 and
w = 0.0212.

The leaflet is approximated with 152 linear triangles with 116 nodes, and the fluid mesh is made up of 189 × 47
biquadratic squares with 36005 nodes. We extend parameters (ρr

= 1) used in the above three publications to two more
general cases as shown in Table 2. Using the first group of parameters, we demonstrate that the one-field FDM can use
a time step of ∆t = 5.0 × 10−3 while the explicit IFEM has to use a time step of ∆t = 1.0 × 10−4 in order to remain
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Fig. 13. Leaflet deformation at different times using Parameter set 1. Comparison between the one-field FDM and the explicit IFEM shows excellent
agreement with Yu (2005). Error measured by the l2 norm of velocity difference: ∥u∥r = ∥uFDM − uIFEM∥/∥uFDM∥.

stable (we reduce the time by a half over consecutive tests to check the convergence until finding a stable time step
∆t = 7.8125 × 10−5, and then slightly increasing it we find ∆t = 1.0 × 10−4 is also stable). However both simulations
lead to almost identical results, as shown in Fig. 13, which match the results of Fig. 3 in Yu (2005). The reason for the
difference in ∆t is due to the additional stabilizing terms added in the one-field FDM, as discussed in Remark 5. Also
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Fig. 14. Deformation at the tip of the leaflet for Parameter set 2. Comparison is between the one-field FDM and implicit IFEM using the same time
step ∆t = 1.0 × 10−4 .

Fig. 15. Velocity norm in the background domain for Parameter set 3 using the one-field FDM.
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Fig. 16. Leaflet deformation at different times for Parameter set 3 using the one-field FDM.

notice that we have to use the same time step for both our implicit and explicit IFEM schemes in order to converge for
this example, because of the huge forcing term on the right-hand side in Eqs. (36) and (37).

We then test a case with different density between fluid and solid: ρr
= 1.2. We use the same time step ∆t =

1.0× 10−4 for both the one-field FDM and the implicit IFEM, and their results, observed from Fig. 14, are very close. The
case of ρr

= 2 has also been tested, but our nonlinear implicit IFEM solver cannot converge at the first time step for any
time step size (recall that our test implementation is based upon a simple fixed-point iteration: convergence may well
be achieved with a more robust nonlinear solver, such as a Newton–Krylov scheme). For completeness, we present the
results using the proposed one-field FDM in Figs. 15 and 16.

11. Conclusions

In this article we have illustrated the relationship between the recently proposed one-field FDM and both the explicit
(explicitly expressing the force term) and implicit (implicitly expressing the force term) IFEM. It is shown how particular
linearizations of the implicit IFEM lead to the other two schemes. This is facilitated through the use of a particular operator
splitting scheme. Furthermore, we show that the one-field FDM produces the same accuracy of results as the implicit IFEM,
but requires no iteration, whilst it significantly improves upon the classical IFEM at very little additional computational
complexity. The one-field FDM is shown to naturally deal with the case of different densities and/or viscosities of the
fluid and solid (note that in Appendix C we show that even larger density ratios than considered in our comparisons can
be handled by the one-field FDM). Therefore, whilst we may view the scheme of Wang et al. (2017) as a fictitious domain
method, it is also legitimate to consider it to be an alternative, highly efficient and robust, approximate solution strategy
for the fully implicit IFEM methods of Wang (2006, 2007) and Wang et al. (2009). Even in the simple case of the same
density and viscosity, where the explicit IFEM is known to be successful, we find that the additional terms added in the
formulation of the one-field FDM have a helpful stabilizing effect, such that a larger time step can be adopted compared
with the explicit IFEM.
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Appendix A. Extension to the compressible neo-Hookean solid model

In this section, we extend the incompressible neo-Hookean solid model to a compressible case, in which case the
constitutive equation can be expressed as (Daniele Boffi, 2017):

σ = σs
= c1J−1 (

FFT − I
)
+ µsDus

− J−1/(1−2ν)I, (A.1)

where ν is the Poisson’s ratio. For a compressible solid, the continuity equation can simply be expressed as:

Jρs
= ρs

0, (A.2)

where ρs
0 is the initial solid density. Then the corresponding weak forms (15) and (16) can be expressed as (Daniele Boffi,

2017):

ρ f
∫

Ω

∂u
∂t

· v + ρ f
∫

Ω

(u · ∇)u · v +
µf

2

∫
Ω

Du : Dv −

∫
Ω

p∇ · v

+ ρδ

∫
Ωs

t

du
dt

· v +
µδ

2

∫
Ωs

t

Du : Dv + c1

∫
Ωs

t

(
J−1FFT − J−1/(1−2ν)I

)
: ∇v

+

∫
Ωs

t

p∇ · v =

∫
Ω

ρ f g · v +

∫
Ωs

t

ρδg · v +

∫
ΓN

h̄ · v,

(A.3)

with ρδ
= ρs

0/J − ρ f , and

−

∫
Ω

q∇ · u +

∫
Ωs

t

q∇ · u +
1
κ

∫
Ωs

t

qp = 0. (A.4)

The boxed terms in the above equations indicate the differences compared with Eqs. (15) and (16). For a compressible
solid model, the incompressibility equation (2) (∇ · u = 0) only holds in the fluid domain Ω

f
t . Therefore we cannot solve

it in the whole domain Ω using a fictitious domain method, because this never matches the velocity of a compressible
solid (∇ · u ̸= 0). The pressure computed in the solid domain p|Ωs

t
is meaningless, which is weakly imposed to be zero

in (A.4) with κ playing the role of a bulk modulus (Daniele Boffi, 2017).
In order to implement the one-field FDM approach, after time discretization one could update the solid stress as

described in Section 9. Alternatively, one could also update the deformation tensor as follows.∫
Ωs

t

J−1Fn+1FTn+1 : ∇v =

∫
Ωs

X

Fn+1 : ∇Xv

=

∫
Ωs

X

(Fn + ∆t∇Xun+1) : ∇Xv.
(A.5)

Using (A.5), Eqs. (A.3) and (A.4) may be solved implicitly, which can also use the operator spitting scheme introduced in
Section 7. See Wang (2018) for more details about the implicit solver and different types of explicit splitting schemes.

Appendix B. Extension to the compressible Saint Venant-Kirchhoff solid model

The constitutive equation of the Saint Venant-Kirchhoff solid model can be expressed as (Bazilevs et al., 2010):

S (E) = 2µE + λtr (E) I, (B.1)

where

E =
1
2

(
FTF − I

)
(B.2)
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Table C.3
Parameter sets for a falling ball and rising bubble.
Parameter sets Re c̃1 ρr µr Fr

Parameter 1 10 0.1 10−3 1 102

Parameter 2 10 105 103 102 102

Fig. C.17. Computational domain and boundary conditions for a rising bubble.

is the Lagrangian Green strain, µ and λ are the Lamé constants. Then the corresponding weak forms (15) and (16) can be
expressed as:

ρ f
∫

Ω

∂u
∂t

· v + ρ f
∫

Ω

(u · ∇)u · v +
µf

2

∫
Ω

Du : Dv −

∫
Ω

p∇ · v

+ ρδ

∫
Ωs

t

du
dt

· v +
µδ

2

∫
Ωs

t

Du : Dv +
1
2

∫
Ωs

X

S : δE

+

∫
Ωs

t

p∇ · v =

∫
Ω

ρ f g · v +

∫
Ωs

t

ρδg · v +

∫
ΓN

h̄ · v

(B.3)

with δE = FT (∇Xv) +
(
∇

T
Xv

)
F and ρδ

= ρs
0/J − ρ f , and

−

∫
Ω

q∇ · u +

∫
Ωs

t

q∇ · u +
1
κ

∫
Ωs

t

qp = 0. (B.4)

The term S : δE may be linearized at a given displacement d̃ as follows:

S : δE ≈ S
(
Ẽ
)

: δẼ −
1
2
S
(
∇

T
X d̃∇Xd̃

)
: δẼ, (B.5)

where

Ẽ =
1
2

(
DXd + ∇

T
X d̃∇Xd + ∇

T
Xd∇Xd̃

)
(B.6)

and

δẼ =
1
2

(
DXv + ∇

T
X d̃∇Xv + ∇

T
Xv∇Xd̃

)
. (B.7)

As with the previous implementation of the one-field FDM, one may update the solid displacement d after time
discretization as follows:

dn+1 = dn + ∆tun+1. (B.8)

One still can use the operator splitting scheme by choosing d̃ = dn, although we omit the full details here.
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Fig. C.18. Snapshots of a rising bubble.

Fig. C.19. Snapshots of a falling ball.

Appendix C. Tests of a falling ball and a rising bubble

As noted in Remark 7, the proposed approach has a limitation to deal with the case of µr < 1. However, we have
not seen instability issues in other cases. In this appendix we aim to demonstrate that the proposed approach can also
cope with the case of large density ratio between solid and fluid. These are solved at Reynolds number 10. In the case
of both large density ratio and large Reynolds number, readers may refer to Nangia et al. (2019) and Pathak and Raessi
(2016) which express the control equations in a conservative form, and a consistent transport of mass and momentum of
various phases are utilized. The following two parameter sets (Table C.3) are tested in order to simulate a rising bubble
and a falling ball respectively. The computational domain and the boundary conditions of the rising bubble are shown in
Fig. C.17. For the falling ball we use the same geometry and boundary conditions as the rising bubble, but initially located
at (0, 1.5) instead of (0, 0.5).
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We discretize the background fluid domain by 100 × 200 quadrilaterals, and the bubble (ball) is initially discretized
by 7042 triangles with 3697 nodes. In the case of the rising bubble, we remesh every 5 time steps in order to capture the
large deformation and guarantee the mesh quality of the bubble. A time step size of 10−3 is used for both cases, and we
have not observed instability issues. Snapshots of the evolution process are displayed in Figs. C.18 and C.19.

Remark 8. Notice that this test is only used to demonstrate the capacity of the proposed method to deal with the case
of large density ratio, and we simply model the bubble using µr

= 1 without considering the surface tension.
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