
Available online at www.sciencedirect.com

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 351 (2019) 718–743
www.elsevier.com/locate/cma

Augmented Lagrangian preconditioner for large-scale hydrodynamic
stability analysis

Johann Moulina, Pierre Jolivetb,∗, Olivier Marqueta

a ONERA-DAAA, 8 rue des Vertugadins, 92190 Meudon, France
b CNRS-IRIT, 2 rue Charles Camichel, 31071 Toulouse Cedex 7, France

Received 15 November 2018; received in revised form 21 March 2019; accepted 25 March 2019
Available online 5 April 2019

Highlights
• Study of the mAL preconditioner for performing hydrodynamic linear stability analyses.
• Comparison of mAL with other state-of-the-art preconditioners such as PCD and SIMPLE.
• Highly scalable method up to 2048 processes using an advanced recycled Krylov method.
• Implementation based on open-source packages such as FreeFEM, PETSc, and SLEPc.

Abstract

Hydrodynamic linear stability analysis of large-scale three-dimensional configurations is usually performed with a
“time-stepping” approach, based on the adaptation of existing solvers for the unsteady incompressible Navier–Stokes equations.
We propose instead to solve the nonlinear steady equations with the Newton method and to determine the largest growth-rate
eigenmodes of the linearized equations using a shift-and-invert spectral transformation and a Krylov–Schur algorithm. The
solution of the shifted linearized Navier–Stokes problem, which is the bottleneck of this approach, is computed via an iterative
Krylov subspace solver preconditioned by the modified augmented Lagrangian (mAL) preconditioner (Benzi et al., 2011). The
well-known efficiency of this preconditioned iterative strategy for solving the real linearized steady-state equations is assessed
here for the complex shifted linearized equations. The effect of various numerical and physical parameters is investigated
numerically on a two-dimensional flow configuration, confirming the reduced number of iterations over state-of-the-art steady-
state and time-stepping-based preconditioners. A parallel implementation of the steady Navier–Stokes and eigenvalue solvers,
developed in the FreeFEM language, suitably interfaced with the PETSc/SLEPc libraries, is described and made openly available
to tackle three-dimensional flow configurations. Its application on a small-scale three-dimensional problem shows the good
performance of this iterative approach over a direct LU factorization strategy, in regards of memory and computational time.
On a large-scale three-dimensional problem with 75 million unknowns, a 80% parallel efficiency on 256 up to 2048 processes
is obtained.
c⃝ 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Keywords: Navier–Stokes equations; Newton method; Krylov–Schur method; Linear stability analysis; Recycled Krylov methods; Distributed
computing

∗ Corresponding author.
E-mail addresses: johann.moulin@onera.fr (J. Moulin), pierre.jolivet@enseeiht.fr (P. Jolivet), olivier.marquet@onera.fr (O. Marquet).

https://doi.org/10.1016/j.cma.2019.03.052
0045-7825/ c⃝ 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/).

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2019.03.052
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2019.03.052&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:johann.moulin@onera.fr
mailto:pierre.jolivet@enseeiht.fr
mailto:olivier.marquet@onera.fr
https://doi.org/10.1016/j.cma.2019.03.052
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

J. Moulin, P. Jolivet and O. Marquet / Computer Methods in Applied Mechanics and Engineering 351 (2019) 718–743 719

1. Introduction

Over the past century, hydrodynamic linear stability theory was developed to understand the early stage of
laminar-turbulence transition in parallel flows, such as boundary layers and shear flows [1]. In the local stability
theory, the growth or decay of perturbations developing on parallel flows, described with mono-dimensional velocity
profiles, is investigated assuming a normal form decomposition. The resulting eigenproblem is of small size and
does not require large computational resources to be solved. Although the local stability theory (mono-dimensional)
was then extended to the description of spatially developing flows [2], the linear stability analysis of truly two- and
three-dimensional flows has gained in popularity since the beginning of the century [3–9] thanks to the development
of computational resources and numerical tools allowing (a) to compute steady solutions of the governing equations
and (b) to determine the most unstable eigenmodes of the linearized equations around this steady solution. An
efficient and highly-parallel numerical tool is proposed in the present paper to achieve these two steps in the case
of the incompressible Navier–Stokes equations.

Two main numerical approaches exist to carry out a linear stability analysis. The first one is the “time-
stepping” [9] or “matrix-free” [5] approach based on the use of existing unsteady nonlinear solvers, developed in
Computational Fluid Dynamics (CFD). The “matrix-free” denomination indicates that the action of matrices onto
vectors is obtained without assembling them. The unsteady solvers are adapted to compute steady solutions and
to extract the eigenmodes of largest growth rate, relevant in linear hydrodynamic stability analysis. For computing
steady (stable or unstable) solutions, stabilization procedures, such as the recursive projection method [10], the
selective frequency damping method [11], or more recently the BoostConv algorithm [12], are applied together
with the unsteady nonlinear solver. The computation of leading eigenvalues is then achieved by noticing that the
operations performed at each iteration of the linearized time-stepping solver correspond to an exponential-based
transformation of the Jacobian operator [5,9]. Classical Krylov subspace-based methods like Arnoldi or Krylov–
Schur are then commonly used to compute the eigenvalues of the exponential operator with largest magnitude, which
are also the leading (rightmost) eigenvalues of the Jacobian operator. One of the advantages of this approach is the
computational-time efficiency of applying one time-step of the unsteady solvers. Indeed, these solvers are often
highly optimized, not only thanks to very scalable parallel implementation, but also because efficient numerical
algorithms have been developed for solving the time-discretized problems (e.g., splitting [13] or fractional step [14]
methods). The drawback of this approach is the slow convergence of the Arnoldi method induced by the use of
time-steppers. Indeed, small time-steps are required for an application of the linearized time-stepper to approximate
accurately the exponential transformation [15]. This leads to a large number of so-called “outer” iterations (in the
103–104 range) to converge only a few eigenvalues. The efficiency of the “time-stepping” approach is thus mainly
based on fast outer iterations at the expense of a large number of such iterations in the Arnoldi process. Note that
other strategies for computing matrix exponential allow to relax the small time-step constraint and thus provide
better convergence properties [16,17].

The second existing numerical approach to perform linear stability analysis in hydrodynamics [6] is referred
here to as the “matrix-based” approach. It relies on the assembly of sparse matrices resulting from the spatial
discretization of the underlying problem and the solution of corresponding linear systems using existing parallel
libraries that implement direct sparse LU factorization of those matrices (MUMPS [18], SuperLU [19]). The
steady-state solutions are then computed by solving the steady nonlinear equations with a (quasi-)Newton method.
An invert-based spectral transformation of the Jacobian operator, like the shift-and-invert [6,20–22] or Cayley
[23–25] transformations, is then applied with a Krylov subspace-based method (typically, the Arnoldi method [26])
to determine the leading eigenvalues. The Newton method and the shift-and-invert strategy allow, respectively, to
achieve fast convergence towards the steady solution and the leading eigenvalues. Usually, the number of Newton
iterations is around 10 or so to compute a steady solution, while it may require a few hundred outer iterations
in the Arnoldi algorithm to compute a few eigenvalues. This reduced number of applications comes at a price: it
requires the ability to invert the linearized steady (and generally shifted) Navier–Stokes equations. Consequently,
it has mainly been used for linear stability analysis of two-dimensional flow configurations, for which the number
of unknowns remains limited (not much greater than 105 unknowns) and the Jacobian matrices remain sparse,
so that the LU factorization is affordable. The “matrix-based” strategy is particularly efficient for the eigenvalue
computation, since the time-consuming LU factorization of the sparse Jacobian matrix is done once for all, while
only the forward eliminations and back substitutions are repeated at each outer iteration. The main drawback of
this approach is the large amount of memory needed to perform factorization, especially for three-dimensional flow

720 J. Moulin, P. Jolivet and O. Marquet / Computer Methods in Applied Mechanics and Engineering 351 (2019) 718–743

configurations [27]. For large-scale hydrodynamics problems, the high cost of forming the Jacobian matrix explicitly,
and the prohibitive memory requirements of direct solvers drove many authors [28–30] towards the “matrix-free”
strategy.

At the early beginning of nineties, Tuckerman [15,31,32] proposed to improve the slow convergence of the
“matrix-free” approach by using a Newton method (resp. a shift-and-invert strategy) for the steady-state (resp.
eigenvalue) computation, while still using an existing unsteady solver. This method is based on the observation
that one can adapt a (linearized) unsteady solver in order to apply, to some given vector, the steady Navier–Stokes
Jacobian operator, left-preconditioned by the (unsteady) Stokes operator. Thus, this technique provides a cheap
“matrix-free” way of preconditioning the Navier–Stokes Jacobian operator by the (unsteady) Stokes operator, for
use inside Krylov subspace linear solvers typically. The method is nowadays known as the “Stokes” preconditioning
technique and has been largely applied during the last decades for the computation of steady-state and leading
eigenvalues [33–37]. Recently, it has been adapted and applied to the determination of resolvent modes in large-
scale three-dimensional configurations [38]. In the Stokes preconditioning technique, the time-step of the linearized
unsteady solver becomes a parameter of the preconditioner. Large time-steps usually provide better preconditioning,
but make the application of one linearized time iteration harder. More details and improvements of the method can
be found in [39]. In any case, the performance of this method remains limited by the efficiency of the (unsteady)
Stokes operator to precondition the linearized steady Navier–Stokes operator.

In the present paper, we propose to develop a “matrix-based” specific solver for performing linear stability
analysis, which relies on state-of-the-art preconditioners for the linearized steady incompressible Navier–Stokes
equations, thus avoiding the use of direct solvers on the full problem. Over the last decades, various promising
approaches have been developed aiming at overcoming the two main difficulties of this problem: the saddle-point
structure of the equations deriving from the incompressibility constraint and the absence of a (small) time-step
parameter that greatly enhances the convergence of iterative algorithms, due to the resulting diagonal dominance
of the matrix. Among those steady preconditioners are the well-known SIMPLE preconditioner [40], the more
recent Pressure Convection–Diffusion (PCD) preconditioner proposed by [41], as well as the original augmented
Lagrangian (AL) [42–44] and modified augmented Lagrangian (mAL) [43,45–47] preconditioners. Several authors
showed the superiority of the modified augmented Lagrangian approach over other state-of-the-art alternatives for
solving the Oseen and linearized incompressible Navier–Stokes equations [48,49]. Moreover, a very recent work [50]
proposed an efficient and highly scalable steady Navier–Stokes solver based on the original augmented Lagrangian
preconditioner. If the augmented Lagrangian strategy has been regularly used for steady-state computations, it was
never tested on practical case of eigenvalue computations. A work in that direction was however proposed by
Olshanskii and Benzi [51], who adapted the original augmented Lagrangian preconditioner to solve the shifted
linearized Navier–Stokes equations. They showed theoretically and numerically that AL was robust to a real-valued
shift on a variety of 2D flow configurations. Complex-valued shifts, as needed in practice to efficiently explore the
complex plane with a shift-and-invert strategy, were not considered.

The first objective of the present paper is to assess the efficiency of the modified augmented Lagrangian
preconditioner for the computation of steady-state solutions with a Newton method and leading eigenvalues with
a complex shift-and-invert strategy. The second objective is to describe, and test on a three-dimensional flow
configuration, an open-source parallel implementation of the modified augmented Lagrangian preconditioner for
linear stability analysis purposes, using the FreeFEM finite element library [52] interfaced with PETSc [53] and
SLEPc [54]. The full code is made available at https://github.com/prj-/moulin2019al.

The paper is organized as follows. The governing equations required to carry out the linear stability analysis of
incompressible flows are introduced in Section 2. The Newton method used to solve the steady nonlinear equations
and the eigensolver based on the shift-and-invert strategy are also described. The preconditioning technique and the
modified augmented Lagrangian preconditioner are introduced in Section 3. The parallel implementation is detailed
in Section 4. Numerical results are given in Section 5. First we examine, on a two-dimensional problem, the effect of
various numerical and physical parameters on the performance of the mAL preconditioner for solving the complex
shifted linearized Navier–Stokes problem. Then we compare the performance of mAL with other state-of-the-art
preconditioners. Finally, we evaluate the performance of the proposed parallel implementation by first comparing
it to a sparse direct solver on a small-scale three-dimensional test case and then, by testing its scalability on a
large-scale configuration that cannot be afforded with a direct sparse solver.

https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al

J. Moulin, P. Jolivet and O. Marquet / Computer Methods in Applied Mechanics and Engineering 351 (2019) 718–743 721

2. Methods for linear stability analysis in hydrodynamics

2.1. Governing equations

Let us consider an incompressible flow, described by the two-dimensional (resp. three-dimensional) velocity field
u = [u, v]T (resp. u = [u, v, w]T) and the pressure field p, that satisfy the incompressible Navier–Stokes equations:

∂u
∂t

+ (u · ∇)u + ∇ p −
1
Re

∇
2u = 0 , −∇ · u = 0

The Reynolds number is defined as Re = U∞L/ν, where U∞ and L are characteristic velocity and length used
to make non-dimensional the velocity and pressure fields, and ν is the kinematic viscosity. For conciseness, the
Navier–Stokes equations are rewritten in a state-space form as follows

M
∂q
∂t

+ R(q) = 0, M =

(
1 0
0 0

)
, R(q) =

(
(u · ∇)u + ∇ p − Re−1

∇
2u

−∇ · u

)
(1)

where q = (u, p)T is the state-space vector. Base flows, denoted hereinafter qb(x), are time-independent (steady)
solutions of the Navier–Stokes equations (1) and thus satisfy the nonlinear steady Navier–Stokes equations

R(qb) = 0. (2)

Linear stability of base flows is investigated by superimposing infinitesimal perturbations q′(x, t) to the base flow
solution, i.e. q(x, t) = qb(x) + ϵq′(x, t), where ϵ is an infinitesimal parameter. After inserting this decomposition
into Eq. (1), using the definition Eq. (2) of the base flow and neglecting high-order terms in ϵ, one obtains the
linearized Navier–Stokes equations governing the temporal evolution of the infinitesimal perturbation,

M
∂q′

∂t
+ J (qb)q′

= 0, where J (qb) =

(
(ub · ∇)(•) + (• · ∇)ub − Re−1

∇
2
• ∇•

−∇ · • 0

)
is the Jacobian operator defined around the base flow qb. The long-term evolution of any infinitesimal perturbation
is conveniently described by assuming a spectral decomposition of perturbations as q′

= q̂(x)eσ t
+ c.c., where q̂(x)

is a complex spatial field whose temporal evolution is exponential and given by the complex number σ = λ + iω.
λ is the growth rate and ω is the angular frequency. Inserting this modal decomposition into the above linearized
equations shows that σ and q̂ are respectively eigenvalues and eigenmodes of the generalized eigenproblem:

σ M q̂ + J (qb) q̂ = 0. (3)

The stability of the base flow is then determined by considering the leading eigenmode q̂0 associated to the
eigenvalue σ0 = λ0 + iω0 with the largest real part λ0. When the growth rate of the leading eigenmode is negative
(λ0 < 0), all the eigenvalues have negative real parts, and the base flow is linearly stable since any perturbations
superimposed to the base flow is damped at sufficiently large time. On the other hand, when the growth rate of the
leading eigenmode is positive (λ0 > 0), the perturbation will grow in time and the base flow is linearly unstable [6].

A linear stability analysis thus consists first in computing a base flow, which is a solution of the steady
Navier–Stokes Eq. (2), and then in determining the leading eigenvalues/eigenmodes of the eigenproblem (3) with
the largest growth rate.

2.2. Spatial discretization

In the present paper, a finite element method is used for the spatial discretization of the nonlinear steady
equations (2) and of the linear eigenproblem (3) on a d-dimensional (d = 2, 3) domain Ω . A grad–div stabilizated
weak formulation [55] of Eq. (2) is used, which consists in finding ub in VΓ =

{
u ∈ (H1(Ω))d , s.t. u = uΓ on Γ

}
and pb in Q = L2(Ω) such that:

Ru(qb; ǔ) = ⟨ub · ∇ub, ǔ⟩ + ⟨Re−1
∇ub, ∇ǔ⟩ − ⟨pb, ∇ · ǔ⟩ + γ ⟨∇ · ub, ∇ · ǔ⟩ = 0 (4a)

Rp(qb; p̌) = −⟨∇ · ub, p̌⟩ = 0 (4b)

for all (ǔ, p̌) in V0 × Q, where ⟨•, •⟩ denotes the L2 inner-product and V0 = {u ∈ (H1(Ω))d , s.t. u = 0 on Γ }

is the velocity space with vanishing velocity on the boundary Γ . The weak residuals of the momentum and mass

722 J. Moulin, P. Jolivet and O. Marquet / Computer Methods in Applied Mechanics and Engineering 351 (2019) 718–743

conservation equations are Ru and Rp, respectively. The last term in the momentum residual Ru is the grad–div
stabilization (also called augmentation) term that corresponds to the weak form of −γ∇ (∇ · ub), with γ ≥ 0
a numerical parameter. In the above continuous weak formulation, the stabilization term strictly vanishes on the
solution: ⟨∇ · ub, ∇ · ǔ⟩ = 0. Indeed, the divergence-free condition ⟨∇ · ub, p̌⟩ = 0 is satisfied for all p̌ ∈ Q, and
in particular for ∇ · ǔ ∈ Q.

A Delaunay triangulation of the domain Th = {K }, consisting in triangular (d = 2) or tetrahedral (d = 3)
elements K , is used. In order to satisfy the inf–sup Ladyženskaja–Babuška–Brezzi (LBB) condition (see [56]), the
Taylor–Hood finite element pair is chosen, so that the discrete velocity uh

b and pressure ph
b are sought respectively

in Vh
Γ = {uh

∈ C0(Ω), s.t. uh
⏐⏐

K ∈ P2(K), ∀K ∈ Th , uh
= uΓ on Γ } and Qh

= {ph
∈ C0(Ω), s.t. ph

⏐⏐
K ∈

P1(K), ∀K ∈ Th}. Note that, with the Taylor–Hood finite element pair, the discrete divergence of the velocity test
functions does not belong to the discrete pressure space, i.e. ∇ · ǔh

̸∈ Qh . Therefore, contrary to the continuous
case, the stabilization term does not vanish from the discrete momentum equation (⟨∇ · uh

b, ∇ · ǔh
⟩ ̸= 0), and the

discrete solution depends on the value of the stabilization parameter γ . Here, the grad–div stabilization is mainly
introduced to improve, thanks to an efficient preconditioner (see Section 3), the iterative solution of linear systems
involved when solving the nonlinear discrete equations (5). The question of whether the grad–div stabilized discrete
solution is closer or further from the continuous weak solution is out of the scope of this paper. However, several
studies (e.g. [44,55,57–59]) showed that the grad–div stabilization often improves the mass conservation property
and the velocity error of the discrete solution, for adequate values of γ . Numerical experiments are performed in
Section 5.2.1 to assess the accuracy of the stabilized discrete solution and to determine adequate values of γ .

Such a discretization yields the following discrete version of the nonlinear base flow Eq. (2):

R(qh
b) = 0 (5)

where qh
b denotes now the vector of coefficients of uh

b and ph
b in the finite elements basis.

The generalized eigenproblem (3) is discretized similarly, yielding

σ M q̂h
+ J(qb

h) q̂h
= 0 (6)

where M and J(qb
h), the finite element matrices obtained after discretization of the mass M and Jacobian operator

J (qb
h), are respectively defined as

M =

(
Mu 0
0 0

)
and J(qb

h) =

(
Aγ BT

B 0

)
. (7)

The rectangular matrix B is the discretization of the divergence operator and its transpose BT represents the
discrete gradient. The mass matrix on the velocity space Mu can be written as a 3-by-3 block diagonal matrix
corresponding to the three velocity components. The 3-by-3 block matrix Aγ = A + γΓ is the sum of A, which
represents the linearized diffusion and convection terms in the momentum conservation equation, and Γ , obtained
after discretization of the grad–div stabilization term. They write:

Aγ =

⎛⎝ Auu + γΓ uu Auv + γΓ uv Auw + γΓ uw

Avu + γΓ vu Avv + γΓ vv Avw + γΓ vw

Awu + γΓwu Awv + γΓwv Aww + γΓww

⎞⎠ , Mu =

⎛⎝Mu 0 0
0 Mv 0
0 0 Mw

⎞⎠ . (8)

In the following, we will mostly refer to the discrete solutions. Therefore, the superscript h is dropped unless
confusion is possible.

2.3. Nonlinear steady-state solver

The nonlinear solution qb of the discrete problem Eq. (5) is obtained by the classical Newton method. The
approximated solution at the kth iteration is obtained as

qk
b = qk−1

b + δqk
b, (9)

where δqb
k denotes the solution increment, obtained by solving the linear problem

J(qk−1
b) δqk

b = −R(qk−1
b) (10)

where J(qk−1
b) is the Jacobian matrix defined in Eq. (7) with the known approximation of the steady solution qk−1

b .
The solution of this linear system is repeated for each iteration of the Newton algorithm, that is considered to be
converged when the l2 norm of the residual ∥R(qb)∥2 is below some numerical tolerance.

J. Moulin, P. Jolivet and O. Marquet / Computer Methods in Applied Mechanics and Engineering 351 (2019) 718–743 723

2.4. Linear eigensolver

The Krylov–Schur algorithm [60] is used in the present study to solve the generalized eigenproblem (6). In order
to compute the leading eigenvalues, which lie in the complex plane close to the zero growth-rate axis (λ = 0) for
any frequency ω, a shift-and-invert spectral transformation is first applied, yielding the transformed eigenproblem

µ q̂ + Tq̂ = 0, T = (J(qb) + sM)−1 M (11)

where s = sr + isi is the so-called complex shift. The eigenvalues µ of the transformed problem are related to
the eigenvalues σ of Eq. (6) through µ = (σ − s)−1 while the eigenvectors are left unchanged by the spectral
transformation. Like the classical power method, the Krylov–Schur algorithm allows to compute the eigenvalues of
largest magnitude. When applied to the transformed problem, it gives the eigenvalues µ of largest magnitude, which
correspond to the eigenvalues σ closest to the complex shift s. To determine the leading eigenvalue of Eq. (6), the
eigenproblem (11) is solved for several values of the complex s close to the real axis, spanning appropriately the
imaginary axis. For each eigenvalue computation, the Krylov–Schur algorithm requires multiple “matrix–vector”
applications of the matrix T. In other words, repeated solutions of the linear system (J(qb) + sM) qo = qi are
required, where the right-hand side vectors qi are given by the Krylov–Schur algorithm.

In the present work, linear stability analysis is thus performed using a nonlinear steady-state solver and a linear
eigensolver, that both rely on multiple solutions of linear systems involving the complex shifted Jacobian matrix
(J+s M). For the steady-state solver, this matrix reduces to the real Jacobian matrix J as the complex shift vanishes
s = 0. The next section introduces a preconditioned iterative method used to solve efficiently such systems.

3. An augmented Lagrangian approach for the shifted Jacobian matrix

As explained in the previous section, the main challenge of an hydrodynamic stability analysis is to solve
efficiently the following linear equation:⎛⎜⎜⎝

Aγ ,uu + sMu Aγ ,uv
Aγ ,uw

BT
u

Aγ ,vu Aγ ,vv
+ sMv Aγ ,vw

BT
v

Aγ ,wu Aγ ,wv
Aγ ,ww

+ sMw BT
w

Bu Bv Bw 0

⎞⎟⎟⎠
⎛⎜⎜⎝

uo

vo

wo

po

⎞⎟⎟⎠ =

⎛⎜⎜⎝
ui

vi

wi

pi

⎞⎟⎟⎠ (12)

where Aγ ,αβ
= Aαβ +γΓαβ (α, β = u, v, w), qo = (uo, vo, wo, po)T is the solution vector and qi = (ui , vi , wi , pi)T

is a right-hand side vector. In the perspective of large-scale computations, we must avoid the use of direct solvers
applied directly to Eq. (12), due to their huge memory cost [27]. Instead, we use the flexible Generalized Minimal
Residual algorithm (GMRES) [61] for solving iteratively Eq. (12). The shifted-Jacobian matrix being indefinite
and ill-conditioned, the use of an iterative method without preconditioning is inefficient as it requires a very large
number of iterations [37]. To improve the numerical efficiency of the iterative solution, the above linear system is
replaced by the right-preconditioned linear system:⎛⎜⎜⎝

Aγ ,uu + sMu Aγ ,uv
Aγ ,uw

BT
u

Aγ ,vu Aγ ,vv
+ sMv Aγ ,vw

BT
v

Aγ ,wu Aγ ,wv
Aγ ,ww

+ sMw BT
w

Bu Bv Bw 0

⎞⎟⎟⎠ P−1

⎛⎜⎜⎝
ũo

ṽo

w̃o

p̃o

⎞⎟⎟⎠ =

⎛⎜⎜⎝
ui

vi

wi

pi

⎞⎟⎟⎠ (13)

where the matrix P is the so-called preconditioner and (ũo, ṽo, w̃o, p̃o)T is an intermediate solution. The final solution
is found by solving the following linear system

P

⎛⎜⎜⎝
uo

vo

wo

po

⎞⎟⎟⎠ =

⎛⎜⎜⎝
ũo

ṽo

w̃o

p̃o

⎞⎟⎟⎠ (14)

The GMRES algorithm is applied to the right-preconditioned Eq. (13) which, in addition to matrix–vector products
with the shifted-Jacobian matrix, requires the repeated application of P−1, i.e., the solution of Eq. (14). A good
preconditioner achieves a compromise between a fast application of the preconditioner and a small number of
iterations to solve the preconditioned system.

724 J. Moulin, P. Jolivet and O. Marquet / Computer Methods in Applied Mechanics and Engineering 351 (2019) 718–743

The augmented Lagrangian preconditioner allows to solve iteratively the Oseen [42–45] and linearized
Navier–Stokes equations [46,51] in a very limited number of iterations, regardless of the mesh refinement and the
Reynolds number value. Nevertheless, these interesting properties are counterbalanced by the difficulty of solving
iteratively the coupled (two or three-dimensional) velocity subproblem arising in the application of the original
preconditioner, as it requires highly specific multigrid solvers [42,50]. In order to circumvent this particular issue,
the so-called modified augmented Lagrangian (mAL) preconditioner was introduced in [45]. It is derived from the
original augmented Lagrangian preconditioner by neglecting either the lower block matrices [45] or the upper block
matrices [49], as follows

PmAL =

⎛⎜⎜⎝
Aγ ,uu + sMu 0 0 0

Aγ ,vu Aγ ,vv
+ sMv 0 0

Aγ ,wu Aγ ,wv
Aγ ,ww

+ sMw 0
Bu Bv Bw Sp

⎞⎟⎟⎠ , (15)

where Sp is an approximation of the pressure Schur complement −B
(
Aγ + sMu

)−1 BT. Rather than being explicitly
specified, this matrix is defined by the action of its inverse as

Sp
−1

= −(γ + Re−1)Mp
−1

− sLp
−1, (16)

where Mp is the mass matrix and Lp the Laplacian matrix, both defined on the discrete pressure space. Note that, for
base flow computations s = 0, only the first term remains in the definition of the approximated Schur complement
Eq. (16). The lower block-triangular version of the preconditioner is chosen for practical reasons explained in
Section 4. In the original preconditioner proposed by [42,45], the augmentation term of the Jacobian matrix Γ
was defined algebraically as BT Mp

−1B, thus requiring two sparse matrix products to be constructed explicitly.
As proposed in [44], the construction cost can significantly be reduced by building the matrix Γ from the finite
element discretization of the grad–div stabilization term. They showed that Γ is then the sum of the algebraic
augmentation BT Mp

−1B and of a stabilization matrix. The efficiency of the mAL preconditioner is thus conserved
while significantly reducing the construction costs. Finally, the grad–div augmentation matrix Γ is much more sparse
than its algebraic counterpart, thus motivating our choice for this implementation of the mAL preconditioner, in the
perspective of large-scale three-dimensional computations.

4. Parallel implementation with FreeFEM and its interface to PETSc/SLEPc

For realistic three-dimensional geometries, the approach derived in the previous sections requires the solution of
nonlinear systems and generalized eigenproblems of large dimensions. Thus, high-performance computing becomes
necessary. The goal of this section is to show how this is done using a finite element domain specific language,
FreeFEM [52,62], interfaced with distributed linear algebra backends, PETSc [53] and SLEPc [54]. A thorough
introduction of these libraries may be found in their respective manuals.1,2,3 Our implementation is openly available
at https://github.com/prj-/moulin2019al and the rest of this section follows the available source code.

4.1. Outer solvers

In this section, we describe how the outer solvers (i.e. the nonlinear steady-state solver and the eigensolver) are
implemented.

The Newton method described in Section 2.3 is implemented using FreeFEM. Only the inversion of the Jacobian
matrix J of Eq. (10) is performed by PETSc. Given a FreeFEM distributed version of the Jacobian matrix dJ, PETSc
options defining the linear solver for Eq. (10) are set using the following FreeFEM syntax:

set(dJ, sparams = params, fields = vX[], names = names,

schurPreconditioner = S, schurList = listX[]);

1 https://doc.freefem.org/pdf/FreeFEM-documentation.pdf.
2 http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf.
3 http://slepc.upv.es/documentation/slepc.pdf.

https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf

J. Moulin, P. Jolivet and O. Marquet / Computer Methods in Applied Mechanics and Engineering 351 (2019) 718–743 725

The keyword sparams is a string defined by the user gathering the PETSc runtime options for the Krylov
subspace solver (KSP) and preconditioner (PC). The interested reader should refer to PETSc manual for details
on the use of runtime options. The keywords fields, names, schurPreconditioner, and schurList allow to
implement specific block preconditioners, like mAL, and their use is detailed in the next sections.

For the eigenvalue computation presented in Section 2.4, only the finite element matrices are built by FreeFEM.
Then, the Krylov–Schur algorithm is performed entirely by SLEPc through the use of the eigenvalue problem solver
framework (EPS), which is called from within FreeFEM.

int k = EPSSolve(dJ, dM, vectors = vec, values = val, sparams = params,

fields = vX[], names = names, schurPreconditioner = S, schurList = listX[]);

// solves the eigenvalue problem dJq̂ = σdMq̂

Contrary to the case of the linear solver interface, two matrices dJ and dM that define the generalized
eigenproblem (6) must now be passed to SLEPc. In addition, sparams must also contain the SLEPc runtime options
defining the eigensolver.

4.2. Inner mAL-preconditioned linear solvers

The inner linear solves of system Eq. (12) with a mAL-preconditioned GMRES require the implementation of the
block structure of the preconditioner (Eq. (15)). This is done in PETSc by using the so-called fieldsplit structure that
gives to the users a high-level of abstraction to define operators by blocks. The following PETSc runtime options
define such a preconditioner:

string params = paramsXYZ + " " + paramsP + " " + paramsKrylov +

" -pc_type fieldsplit -pc_fieldsplit_type multiplicative";

The desired lower block-triangular structure of the preconditioner is obtained by the use of PETSc keyword
multiplicative. The strings paramsXYZ and paramsP respectively contain the innermost velocity and pressure
block solvers options that will be detailed later on. The string paramsKrylov contains the definition of the Krylov
subspace linear solver. For example, one should simply write paramsKrylov = "-ksp_type fgmres" to use the
flexible GMRES. In order to implement the modified augmented Lagrangian preconditioner PmAL through the
fieldsplit structure, in 3D, the four fields u, v, w, and p must be defined. Assuming the problem is formulated
in the full vectorial finite element space Wh, containing the velocities and pressure unknowns, one must be able
to differentiate the degrees of freedom belonging to each field. To that aim a finite element function taking a
different integer value for each one of the four fields is defined in FreeFEM and passed to PETSc/SLEPc through
the keyword fields. Then, for simplicity, each field is attributed a name that will be used to identify it when
defining the different innermost solvers associated to the diagonal blocks of PmAL, c.f. Section 4.3. Those names
are contained in an array of strings, that is provided to the solver through the keyword names.

Wh [vX, vY, vZ, p] = [1, 2, 3, 4]; // numbering of each field

string[int] names(4); // prefix of each field

names[0] = "vX"; // x-velocity
names[1] = "vY"; // y-velocity
names[2] = "vZ"; // z-velocity
names[3] = "p"; // pressure

Approximate Schur complements The default setting in PETSc, when using a multiplicative fieldsplit precondi-
tioner, is to define the preconditioner as the lower block triangular part of the system matrix in Eq. (12). Thus, on
the block diagonal of such a preconditioner, one would have Aγ ,uu + sMu , Aγ ,vv

+ sMv , Aγ ,ww
+ sMw and the

null matrix. In order to implement PmAL, one must replace, in the preconditioner only, the default operator for the
pressure field (the null matrix) by the ones necessary to implement the desired Schur complement approximation
Eq. (16). This is done in PETSc using PCFieldSplitGetSubKSP to retrieve the operators linked to each field of
the fieldsplit structure and then KSPSetOperators to set the new operators that define Eq. (16).

When the shift s is null, for base flow computations, the approximate Schur complement only requires the
assembly of one operator: (γ +Re−1)−1Mp. This is done in FreeFEM as shown below, and then passed to PETSc
with the keyword schurPreconditioner.

726 J. Moulin, P. Jolivet and O. Marquet / Computer Methods in Applied Mechanics and Engineering 351 (2019) 718–743

matrix[int] S(1); // array with a single matrix

varf vSchur(p, q) = int3d(th, qforder = 3)

(-1.0/(gamma + 1.0/Re) * p * q); // Eq. (16) with s = 0
S[0] = vSchur(Qh, Qh); // matrix assembly

For eigenvalue computations, two auxiliary operators are now needed: (γ + Re−1)−1Mp and s−1Lp. The
construction in FreeFEM is performed using the following lines, and then again passed to SLEPc with the keyword
schurPreconditioner.

matrix<complex>[int] S(2); // array with two matrices

complex scale;

varf vMp(p, q) = int3d(th, qforder = 3)(scale * p * q); // Eq. (7)

scale = 1.0/(gamma + 1.0/Re);

S[0] = vMp(Qh, Qh); // first matrix assembly

macro grad(p)[dx(p), dy(p), dz(p)]// macro for computing ∇ p
varf vLp(p, q) = on(3, p = 1) // inlet boundary condition

+ int3d(th, qforder = 2)(scale * (grad(p)’ * grad(q)));

// shift value s
complex s = getARGV("-shift_real", 1.0e-6) + getARGV("-shift_imag", 0.6) * 1i;

scale = 1.0/s;

S[1] = vLp(Qh, Qh); // second matrix assembly

Finally, we note that the operators needed for the Schur complement approximation are built on the pressure
space Qh. However, in FreeFEM, it is not possible to know a priori the correspondence between the numbering of
Wh, where the full solution is defined, and Qh. To circumvent this issue, we compute this correspondence in FreeFEM
from an interpolation between Qh and Wh, and then pass it to PETSc/SLEPc with the keyword schurList:

Qh pIdx; // function from the pressure space

pIdx[] = 1:pIdx[].n; // numbering of the unknowns of Qh

// renumbering into the complete space by doing an interpolation on Wh

Wh [listX, listY, listZ, listP] = [0, 0, 0, pIdx];

4.3. Innermost velocity and pressure linear solvers

The approximate inverses of the diagonal blocks in Eq. (15) are defined using off-the-shelf iterative methods
from PETSc. For each velocity field, the GMRES is used, right-preconditioned by an additive Schwarz method
(ASM) with one-level of algebraic overlap, as well as exact LU factorizations for each subdomain solver. These
factorizations are carried out by MUMPS [18]. A maximum Krylov dimension of 50 is prescribed and the GMRES
is stopped when the relative unpreconditioned residual norm is lower than 10−1. In our implementation, the
PETSc runtime options defining the approximate inverse of the diagonal velocity blocks are contained in the string
paramsXYZ detailed below:

real tolV = getARGV("-velocity_tol", 1.0e-1); // default to 10−1

// monodimensional velocity solver

string paramsV = "-ksp_type gmres -ksp_converged_reason -ksp_pc_side right " +

"-ksp_rtol " + tolV + " -ksp_gmres_restart 50 -pc_type asm " +

"-pc_asm_overlap 1 -sub_pc_type lu -sub_pc_factor_mat_solver_type mumps";

// each velocity component gets the same monodimensional solver

// defined by paramsV

string paramsXYZ = "-prefix_push fieldsplit_vX_ " + paramsV + " -prefix_pop"

+ " -prefix_push fieldsplit_vY_ " + paramsV + " -prefix_pop"

+ " -prefix_push fieldsplit_vZ_ " + paramsV + " -prefix_pop";

For the pressure Schur complement approximate inverse Eq. (16), the PETSc runtime options defining the solver
are contained in the string paramsP. We must distinguish the cases of the base flow and eigensolvers. For the

J. Moulin, P. Jolivet and O. Marquet / Computer Methods in Applied Mechanics and Engineering 351 (2019) 718–743 727

former (s = 0), only the action of Mp
−1 has to be evaluated. For that purpose, we use at most five iterations of the

Jacobi-preconditioned conjugate gradient algorithm:

string paramsP = "-prefix_push fieldsplit_p_ " +

"-ksp_type cg -ksp_max_it 5 -pc_type jacobi -prefix_pop";

For the eigensolver (s ̸= 0), the action of the inverse of the Schur complement is approximated by the sum of
the action of (γ + Re−1)Mp

−1 and sLp
−1. This is done through PETSc composite preconditioner:

string paramsP = "-prefix_push st_fieldsplit_p_ " +

"-ksp_type preonly -pc_type composite " +

"-prefix_push sub_0_ " + // action of (γ + Re−1)Mp
−1

"-pc_type bjacobi -sub_pc_type icc -prefix_pop " +

"-prefix_push sub_1_ " + // action of sLp
−1

"-pc_type gamg -pc_gamg_square_graph 10 -prefix_pop " +

"-prefix_pop";

Here only one application of the block Jacobi preconditioner with ICC(0) subsolvers [63] is used for approxi-
mating the mass matrix inverse while one V-cycle of GAMG [64] is used for the Laplacian term.

5. Numerical results

The efficiency of the modified augmented Lagrangian (mAL) preconditioner is investigated in this section by
performing the linear stability analysis of two- and three-dimensional flow configurations described in Section 5.1.
The two-dimensional computations are always performed on one process as they are of limited size. For the
three-dimensional case, the fully parallel implementation presented in Section 4 is used. The influence of various
numerical and physical parameters, such as the augmentation parameter, the mesh size and the Reynolds number,
is first assessed in Section 5.2 for the two-dimensional configuration, before comparing the performance of mAL
preconditioner with other block preconditioners (PCD, SIMPLE, Stokes) in Section 5.3. The efficiency of the parallel
implementation is finally investigated in Section 5.4 for the three-dimensional configuration.

5.1. Two- and three-dimensional test cases

The two-dimensional flow configuration is sketched in Fig. 1(a). A thin plate of height h and thickness t = h/6
is immersed in an incoming flow of uniform velocity U∞. The size of the computational box indicated in the figure
and the flow variables are made non-dimensional using h as characteristic length and U∞ as characteristic velocity,
so that the Reynolds number is defined as Re = U∞h/ν, where ν is the kinematic viscosity.

Triangulations of the computational domain are obtained with the internal mesh generator of FreeFEM. The
no-slip boundary condition u = v = 0 is applied on the plate, symmetry boundary conditions (∂yu = 0 and v = 0)
are applied at the top and bottom boundaries of the computational domain, and a stress-free boundary condition is
applied at the outlet boundary.

A typical steady solution of the incompressible Navier–Stokes equation is displayed in Fig. 2(a) for Re = 40.
The flow recirculates in two symmetric regions in the wake of the plate, as indicated by the streamlines. The linear
stability analysis of this base flow yields the eigenvalue spectrum shown in Fig. 2(c) with circles. A pair of complex
conjugate unstable eigenvalues is found (λ ⩾ 0) characterized by an angular frequency ω = 0.70. For a lower value
of the Reynolds number Re = 30, this eigenvalue is stable as shown by the square symbols. The real part of the
eigenmode associated to this leading eigenvalue is depicted in Fig. 2(b) with isocontours of the streamwise velocity.
The spatial structure of this eigenmode breaks the symmetry of the steady solution and is responsible for the onset
of the well-known Von Kármán vortex-street that becomes visible behind bluff bodies once the exponential growth
of the linear instability saturates due to nonlinearities.

The three-dimensional flow configuration is a plate of height and thickness identical to the two-dimensional
plate, but of finite length L in the spanwise direction z, as sketched in Fig. 1(b). The computational domain is
discretized using Gmsh [65] by a Delaunay mesh composed of 17 million tetrahedra, which are then partitioned
between processes with ParMETIS [66]. Using Taylor–Hood finite element pair, cf. Section 2.2, this leads to a

728 J. Moulin, P. Jolivet and O. Marquet / Computer Methods in Applied Mechanics and Engineering 351 (2019) 718–743

(a) Two-dimensional geometry (b) Three-dimensional geometry (span view)

Fig. 1. Two-dimensional and three-dimensional flow configurations. Sketch of the computational domains used for (a) the two-dimensional
plate of height h = 1 and thickness t = 1/6 and (b) the three-dimensional plate of span L = 2.5 immersed in an upstream uniform
streamwise flow U∞.

(a) Base flow (Re = 40)

(b) Leading eigenmode (Re = 40) (c) Eigenvalue spectra

Fig. 2. Results of the linear stability analysis for the two-dimensional configuration. Streamwise velocity u of (a) the steady-state solution
and (b) the real part of the unstable eigenmode. (c) Eigenvalues are depicted with circles in the complex plane (growth rate λ and frequency
ω). The unstable region is shown in gray. Only eigenvalues with positive frequencies are shown, the spectrum being symmetric.

J. Moulin, P. Jolivet and O. Marquet / Computer Methods in Applied Mechanics and Engineering 351 (2019) 718–743 729

(a) Steady solution

(b) High-frequency unstable eigenmode

Fig. 3. Linear stability analysis for the three-dimensional flow around of plate of spanwise length L = 2.5 and Re = 100. Streamwise
velocity contours of (a) the steady solution and (b) the high-frequency unstable eigenmode (ω = 0.57) are presented.

total of 75 million unknowns. The boundary conditions are similar to those detailed above for the two-dimensional
configuration.

The linear stability analysis of this flow configuration has been performed by [27] who determined the neutral
curves of various unstable eigenmodes in the range of Reynolds number 40 ≤ Re ≤ 200 and length 1 ≤ L ≤ 6.
Here, we specifically investigate the plate of length L = 2.5 for the Reynolds number Re = 100. The steady
solution, depicted in Fig. 3(a), exhibits a large three-dimensional recirculation region in the wake of the plate. The
stability analysis performed in [27] revealed that two pairs of complex eigenvalues get unstable above Re ≃ 101
for this parameter choice, with respective angular frequencies of ω ≃ 0.3 and ω ≃ 0.57. Hereinafter, we focus
on the high-frequency eigenmode, depicted in Fig. 3(b). As shown in the figure, the three-dimensional eigenmode
breaks the top/bottom symmetry of the steady-state solution, as for the two-dimensional plate.

5.2. Influence of numerical and physical parameters

We investigate in this section the influence of various numerical and physical parameters on the performance
of the mAL preconditioner. Tests are performed on the two-dimensional flow configuration previously introduced.
The effect of the augmentation parameter on the preconditioner efficiency and solution accuracy is reported in
Section 5.2.1. The performance of the preconditioner is tested in Section 5.2.2 for many values of the complex
shift parameter used in the shift-and-invert strategy to compute the leading eigenvalues. The behavior of the
preconditioner in regards to the mesh refinement and the Reynolds number is finally tested in Section 5.2.3.

730 J. Moulin, P. Jolivet and O. Marquet / Computer Methods in Applied Mechanics and Engineering 351 (2019) 718–743

In all the numerical tests performed in this section, the full GMRES without restart is used in order to fairly
assess the performance of the preconditioner. The diagonal blocks defined by the mAL preconditioner Eq. (15) are
here inverted using the sparse direct solver MUMPS.

5.2.1. Effect of the augmentation parameter
The effect of the augmentation parameter γ on the performance of the mAL preconditioner is first assessed by

considering the number of GMRES iterations. Using the Newton method described in Section 2.3, steady solutions
are computed for the Reynolds number Re = 40 and several values of the augmentation parameters reported in the
first columns of Tables 1a and 1b, that correspond to results obtained with a coarse mesh (14,674 triangles) and a
finer mesh (128,874 triangles), respectively. The GMRES relative tolerance being fixed to 10−6, the average numbers
of inner (GMRES) iterations per outer (Newton) iteration are reported in the second columns of those tables. For
both meshes, there exists an optimal value of the augmentation parameter, γ ≃ 1, for which a minimum number of
iterations is reached. Similar observations are reported in other studies [44–47,49] for different flow configurations
such as the lid-driven cavity flow, the backward facing step or the flow over a flat plate. Note also that the number
of iterations is quite similar for the coarse and fine meshes, regardless of the augmentation parameter value. For
the optimal γ , the average number of inner iterations is around 50.

As briefly discussed in Section 2.2, the introduction of the grad–div stabilization term in the weak formulation
(4a) does not modify the conservation of momentum at the continuous level, since the continuous solution is
divergence-free. However, with the spatial discretization chosen in the present study (Taylor–Hood finite element),
the divergence of the velocity is only weakly satisfied and the grad–div stabilization term modifies the discrete
momentum equation. The augmentation parameter has therefore an influence on the accuracy of the discrete solution.
To assess this effect, a reference steady solution, denoted (ur

b, pr
b), is computed without stabilization parameter

(γ = 0) on a very-fine mesh made of 512,872 triangles. The corresponding leading eigenvalue denoted σ r is
also computed. The two last columns of Tables 1a and 1b report the relative errors of the steady velocity and the
leading eigenvalue computed with the coarse and fine meshes, respectively, for several values of γ . Examining first
the results obtained with the coarse mesh (see Table 1a), a minimal error is obtained for γ ≃ 1, not only for the
steady solution but also for the leading eigenvalue. When the mesh is refined (see Table 1b), a minimal error is
still obtained for γ ≃ 1, although less pronounced. Compared to results obtained with the coarse mesh, the relative
error is decreased whatever the value of the augmentation parameter. As expected, the augmentation parameter less
affects the accuracy of the discrete solution when the mesh is refined, since the discrete solution tends towards the
continuous solution. It is worth noticing that the use of the stabilization term can significantly improve the accuracy
of the solution. For instance, the accuracy of the eigenvalue obtained for the coarse mesh with γ = 1 is identical
to the one obtained for the fine mesh without stabilization γ = 0. In other words, the same accuracy is obtained
but with ten times fewer mesh elements.

The present results clearly indicate that γ ≃ 1 is an optimal value from both the solution accuracy point of
view and the preconditioning efficiency point of view when considering not only steady solutions, as reported
before [44], but also leading eigenvalues. As a consequence, in the following, we consider that γ can be chosen on
preconditioning efficiency criteria only without compromising accuracy.

5.2.2. Effect of the shift parameter
The shift-and-invert strategy, adopted in the present study to compute the eigenvalues with largest real part,

requires to specify the complex value s = sr + isi that appears in the spectral transformation Section 2.4. When
investigating the transition of a steady solution from a stable to an unstable state, a common practice is to choose
the shift parameter as a pure imaginary number, i.e. s = isi , and to vary the imaginary part in order to compute
complex eigenvalues with growth rates close to λ = 0. Depending on the flow configuration investigated, the
steady solution may get unstable for eigenmodes characterized by very different frequencies. Ideally, the number
of preconditioned GMRES iterations should be insensitive to the value of the complex shift, for the Krylov–Schur
algorithm to converge rapidly whatever the eigenvalue of interest. To the best of our knowledge, only the case of
a real-valued shift has been considered so far, either positive when solving the unsteady Oseen problem [44,45] or
negative when solving the linearized Navier–Stokes equation [51].

Here, we vary s in the whole complex plane and assess its effect on the efficiency of the mAL preconditioner by
performing the following numerical experiment. The linear system Eq. (12) is solved with right-hand side vectors

J. Moulin, P. Jolivet and O. Marquet / Computer Methods in Applied Mechanics and Engineering 351 (2019) 718–743 731

Table 1
Effect of the grad–div augmentation parameter γ on the mAL preconditioning efficiency and the solution accuracy. For both tables, the first
column indicates values of γ . The second column represents the average number of mAL preconditioned GMRES iterations per Newton
iteration. The last two columns give the relative errors of the steady solution and the leading eigenvalue compared with a reference solution
(ur

b, σ
r) computed on a very fine mesh without stabilization (γ = 0).

γ
of GMRES
iterations

uh
b−ur

b

2

∥ur
b∥2

σ h
−σ r

∥σ r ∥

of GMRES
iterations

uh
b−ur

b

2

∥ur
b∥2

σ h
−σ r

∥σ r ∥

0 860 2.8 · 10−4 9.8 · 10−4 873 3.2 · 10−5 1.1 · 10−4

10−1 191 2.1 · 10−4 7.9 · 10−4 194 2.7 · 10−5 1.1 · 10−4

100 52 8.4 · 10−5 1.1 · 10−4 53 1.4 · 10−5 5.4 · 10−5

101 337 4.4 · 10−4 1.5 · 10−3 363 2.7 · 10−5 8.5 · 10−5

102 >1000 1.3 · 10−3 4.6 · 10−3 >1000 6 · 10−5 2.1 · 10−4

(a) Coarse mesh (14,674 triangles) (b) Fine mesh (128,874 triangles)

Fig. 4. Influence of the complex shift. Isocontours represent the number of GMRES iterations needed to solve the linear system (13) with
the mAL preconditioner, depicted in the complex plane (sr , si), and computed for Re = 40 and γ = 0.7. The red circles are the eigenvalues
of the Jacobian matrix (6).

whose coefficients are randomly generated in [0, 1] + [0, 1]i, as done for instance in [67]. The Jacobian matrix J
of the linear system is computed with the steady solution at Re = 40 and the augmentation parameter γ = 0.7.
In other words, only the inner solver is studied, no outer iteration (Newton or Krylov–Schur) is performed. The
isocontours shown in Fig. 4 in the complex plane (sr , si) correspond to the number of inner (GMRES) iterations
required to decrease the relative residual to 10−6. The red circles are eigenvalues of the Jacobian matrix. First,
the number of iterations increases when the shift gets closer to any eigenvalue. In that case, the matrix J + sM
involved in the spectral transformation 2.4 becomes singular, leading to a very ill-conditioned linear system and
thus high iteration counts. Second, the number of iterations is reduced when increasing sr . Solving the linear system
for sr < 0 is generally more expensive than for sr > 0. According to [51], this is due to the indefiniteness of the
velocity block Aγ + sMu in Eq. (12) for sufficiently large negative values of sr . On the contrary, the velocity block
is definite when sr > 0. The contribution of the shift can be interpreted as a (positive definite) time-step term, which
reinforces the diagonal dominance of the problem and thus improve its spectral properties. For more details, the
reader can refer to [45, section 2.6], where the mAL preconditioner is used to solve the unsteady Oseen problem.
Finally, no particular trend is observed in the number of inner iterations when fixing the real part sr and varying
the imaginary part si , except when getting closer to an eigenvalue. For sr = 0, the number of iterations is roughly
constant for si < 0.5 and increases around si = 0.6 due to the proximity of the unstable eigenvalue marked by the
red circle. By further increasing si , the number of iterations then decreases.

732 J. Moulin, P. Jolivet and O. Marquet / Computer Methods in Applied Mechanics and Engineering 351 (2019) 718–743

(a) Mesh dependence (Re = 40) (b) Reynolds dependence (14,828 triangles)

Fig. 5. Effect of mesh refinement (a) and Reynolds number (b) on mAL preconditioning efficiency. The GMRES iteration count for
solving Eq. (12) to a relative tolerance of 10−6 is presented for different shifts: s = 0 (), s = 0.3i (), s = 0.6i () and s = 1i
().

5.2.3. Effect of the mesh refinement and Reynolds number
The modified augmented Lagrangian preconditioner allows to compute steady solution in a number of GMRES

iterations independent of the mesh refinement, as previously observed in Table 1, and mildly dependent of the
Reynolds number [43,45]. The influence of the mesh refinement and Reynolds number on the number of iterations
needed to solve the complex-shifted linear system Eq. (12) has not been investigated so far. The numerical
experiment consists in solving the linear system to the relative tolerance of 10−6 for right-hand side vectors with
randomly generated coefficients as explained before. First, the Reynolds number is fixed (Re = 40) as well as the
augmentation parameter (γ = 0.7) while the mesh refinement changes. The number of inner GMRES iterations
is reported in Fig. 5(a) as a function of the number of triangles. The curves correspond to different values of the
(purely imaginary) shift. Clearly, the iteration count is independent of the mesh refinement, regardless of the shift.
Second, a fixed mesh refinement is chosen (14,828 triangles) and the linear system is solved for different values of
the Reynolds number in the range [10; 500] for different shift values. As reported in [46] when computing steady
solutions, the optimal value of the augmentation parameter that minimizes the number of iterations depends on the
Reynolds number. The optimal value of γ has been first determined for each value of Re. For Re = 10, the optimal
value is γ ≃ 1.2 and it decreases to γ ≃ 0.4 for Re = 500. These optimal values of γ have been determined for
s = 0 but are used in the following regardless of the values of s. The number of iterations is depicted in Fig. 5(b)
as a function of the Reynolds number. The mAL preconditioner shows a mild degradation of its performance as Re
increases, independently of the values of the shift. The increase of the number of inner iterations is proportional to
Re0.5 in this numerical experiment.

As a conclusion, the modified augmented Lagrangian preconditioner exhibits interesting properties for performing
efficiently a linear stability analysis using a shift-and-invert strategy: robustness with respect to a complex-valued
shift, mesh independence, and a mild deterioration as Re increases.

5.3. Comparison with other block preconditioners

The mAL preconditioner is one of many other preconditioners developed to solve the steady incompress-
ible Navier–Stokes equations. Among them, we select the Pressure Convection–Diffusion (PCD) [41] and the
SIMPLE [40] preconditioners, widely used and easily implemented, and compare their performance with those
of the mAL preconditioner. In addition, we also test the unsteady Stokes preconditioner [31] which has gained
in popularity in the hydrodynamic stability community [68], as it can be easily implemented using existing time-
steppers so as to compute base flows and leading eigenvalues [15]. In our implementation however, the Stokes
preconditioner is itself applied using a nested Krylov subspace method instead of an existing time-stepper. More

J. Moulin, P. Jolivet and O. Marquet / Computer Methods in Applied Mechanics and Engineering 351 (2019) 718–743 733

details on those preconditioners are given in Appendix B but it is worth recalling here that they are designed for
classical Galerkin discretization of the Navier–Stokes equations. Therefore, their application to the iterative solution
of Eq. (12) is meant for γ = 0, i.e. without grad–div stabilization terms.

The numerical test case consists in solving iteratively Eq. (12) with a random right-hand side vector, as detailed
before, for a large relative tolerance equal to 10−3 to limit the number of iterations. The shift is fixed to s = 0
since it was shown in Section 5.2.3 that the mAL preconditioner depends very weakly on the shift parameter
when the mesh is refined or the Reynolds number is increased. All innermost block solutions are performed using
exact LU factorizations. The PCD and SIMPLE preconditioners are parameter-free, unlike the mAL and Stokes
preconditioners. For the latter, the optimal values of the parameter (γ for mAL and a time-step like parameter for
Stokes) are determined for each values of the Reynolds number.

The effect of the mesh refinement and Reynolds number on the number of inner iterations, studied in the previous
paragraph for the mAL preconditioner, is assessed here for all the other preconditioners. Results are compared in
Fig. 6. This number of iterations is a good measure to compare the efficiency of the different preconditioners, in a
first approximation, because for each inner iteration, the application of all preconditioners requires the solution of
subproblems with similar complexities.4 Therefore, the computational time of one inner iteration is roughly similar
for all preconditioners.

All the preconditioners are independent of the mesh refinement, as shown in Fig. 6(a), except for the SIMPLE
preconditioner for which the number of inner iterations slightly increases with the number of triangles. Interestingly,
the number of iterations is significantly less for mAL and PCD (around 50) than for Stokes and SIMPLE (around
1000). Note that for the two preconditioners depending on a parameter (mAL and Stokes), their optimal value was
found to be independent of the mesh refinement.

The effect of the Reynolds number is reported in Fig. 6(b). For all tested preconditioners, the number of
iterations increases with the Reynolds number, but with different slopes. The mAL preconditioner exhibits the best
performance for all Reynolds numbers, except for low Reynolds number (Re < 20) where PCD is more efficient.
However, the number of iterations obtained with the PCD preconditioner increases strongly for larger values of
the Reynolds number (Re > 80). The mAL and SIMPLE preconditioners exhibit a similar trend: the number of
iterations scales with the Reynolds number as Re0.5. However, it is significantly larger with SIMPLE than with
mAL, regardless of the Reynolds number. At low Re, the Stokes preconditioner behaves similarly to the SIMPLE
preconditioner, but for larger Re, it degrades significantly and exhibits the same trend as the PCD preconditioner.
Finally, when considering the number of iterations, the mAL preconditioner is undoubtedly the best preconditioner.
We note that, contrary to the mesh dependence study, the optimal parameters of mAL and Stokes showed some
variations with respect to Re.

Let us now compare the computational time for applying the four preconditioners. To that aim, the direct LU
factorizations used until now for the innermost velocity blocks solvers are replaced by GMRES right-preconditioned
with an I LU (2) method (as implemented in PETSc). The choice of an innermost iterative solution allows for
a more comprehensive interpretation of the computational time, since it accounts for the various complexities in
solving iteratively the velocity blocks involved in the different preconditioners. Moreover, such an innermost iterative
solution is necessary when considering large-scale three-dimensional problems, as shown in the next section. The
relative tolerance of the inner (resp. innermost) GMRES is fixed to 10−3 (resp. 10−2). The computational times
obtained with the four preconditioners are reported in Fig. 7(a) for Re = 40 (left) and Re = 100 (right). The total
time is split into the time spent in computing matrix–vector products, in applying the global preconditioner, and in
constructing the global Krylov subspace. The inner iteration counts are given between parenthesis. Note that it may
be slightly higher than what is presented in Fig. 6 since the velocity blocks are now solved only approximately. All
computations are run on a standard laptop computer.

For the low Reynolds number Re = 40, the mAL and PCD preconditioners are about ten times faster than the
SIMPLE and Stokes preconditioners.5 For this Reynolds number, the PCD preconditioner is comparable with the
mAL preconditioner, as it is only 40% slower. However, when the Reynolds number is increased to Re = 100,

4 Two scalar velocity solves and one pressure Schur complement solve for mAL and Stokes; one vectorial velocity solve and one pressure
Schur complement solve for PCD and SIMPLE.

5 Note that the time for building the inner Krylov subspace is very small for the Stokes preconditioner at Re = 40, despite a large
number of iterations. This is due to the fact that, in the implementation detailed in Appendix B, the Stokes preconditioner is itself applied
with a nested iterative method. Therefore, no Krylov subspace of dimension 947 is actually built.

734 J. Moulin, P. Jolivet and O. Marquet / Computer Methods in Applied Mechanics and Engineering 351 (2019) 718–743

(a) Mesh dependence (Re = 40) (b) Reynolds dependence (14,828 triangles)

Fig. 6. Influence of (a) the number of mesh elements and (b) the Reynolds number Re on the number of inner iterations required to solve
Eq. (12) with the mAL (), PCD (), SIMPLE (), and Stokes () preconditioners. The relative tolerance is set to 10−3 and the
shift to zero.

the performance of PCD degrades significantly with respect to mAL, as it is now about five times slower. The
computational times are not given for the SIMPLE and Stokes preconditioners because they largely exceed 2100
seconds. The deterioration in the computational time of the PCD preconditioner when the Reynolds number is
increased, is in agreement with the growth in the number of iterations observed before. For even higher Reynolds
numbers Re > 100, the mAL preconditioner is expected to be increasingly more interesting than its competitors.

As a conclusion, this benchmark shows that, compared to other widely used preconditioners, mAL provides a
more efficient approach for solving Eq. (12) on a configuration typical of two-dimensional external flows around
bluff bodies. In particular, among the alternatives tested here, it is the only preconditioner combining a mesh-
independent iteration count and a mild degradation with Re0.5, making it the most efficient preconditioner for
Re ⩾ 20.

5.4. Performance of the parallel implementation

In this section, the performance of the parallel implementation detailed in Section 4 is tested on the three-
dimensional configuration presented in Section 5.1. First, a coarse mesh is used, in order to be able to compare our
approach with the direct parallel solver MUMPS. Then, the full size 3D configuration presented before is considered
to test the parallel performance of our approach on a problem that a direct solver could not handle at a reasonable
memory cost.

5.4.1. Comparison with a direct solver on a small-scale 3D configuration
Despite its large memory requirements, some authors have used the “matrix-based” approach, combined with

direct solvers for the arising linear systems, to perform the stability analysis of three-dimensional flows [27,69].
In this section, we aim at comparing the performance of this approach to ours. To that end, the three-dimensional
test case is considered using a coarse mesh of 1.1 million tetrahedra (4.8 million unknowns), in order to keep the
memory consumption of the direct solver reasonable. The computations are performed on Sator, an ONERA cluster
composed of 620 nodes with two fourteen-core Intel Broadwell clocked at 2.4 GHz. The direct solver we compare
ourselves to is MUMPS.

5.4.1.1. Nonlinear solver. In this section, the Newton nonlinear tolerance and the GMRES relative tolerance are
both set to 10−6. In Fig. 8(a) we report the average wall-clock time per Newton iteration for the mAL and MUMPS
approaches, as a function of the number of processes. On the top x-axis, we report the amount of available memory

J. Moulin, P. Jolivet and O. Marquet / Computer Methods in Applied Mechanics and Engineering 351 (2019) 718–743 735

(a) Re = 40 (b) Re = 100

Fig. 7. Comparison of the performance of various preconditioners on the two-dimensional test case (14,828 triangles). The total time is split
between matrix–vector products, applying the preconditioner, and building the Krylov subspace. The number of global GMRES iterations
is given between parenthesis. System Eq. (12) is solved to a relative tolerance of 10−3. For Re = 100, the hatched bars correspond to
preconditioners for which the total time largely exceeded 2100 seconds and is not reported in detail. The velocity blocks in the preconditioners
are solved iteratively to a relative tolerance of 10−2 using an innermost GMRES, right-preconditioned with I LU (2). The pressure blocks
are solved exactly with MUMPS. These times will depend on the particular preconditioners used for solving the diagonal blocks. Therefore,
those results should be considered qualitatively.

corresponding to each number of processes. First, as expected, the memory requirements of our approach are lower
than with MUMPS: we observe that MUMPS cannot be run on less than 224 processes, which corresponds to an
available memory of 1024 GB, whereas the mAL approach can be run on 28 processes (128 GB). Note that the
memory requirements of the mAL approach could be even lower by using iterative methods for the subdomain
solvers of the innermost ASM-preconditioned GMRES iterations. Moreover, thanks to good scalability properties
and the absence of a full LU factorization at each Newton iteration, the mAL approach is clearly faster than MUMPS
(about ten times with 448 processes).

5.4.1.2. Eigensolver. For the eigensolver, the Krylov–Schur tolerance is 10−6 whereas the inner relative tolerance
is 10−3. Note that we use a larger tolerance for the inner linear solve than for the outer Krylov–Schur solver. Indeed,
contrary to what is often recommended in the literature (e.g., [70, §3.4.1]), we observed that it was not necessary
to use a smaller tolerance for the inner solution of Eq. (12) in order to keep a satisfying accuracy on the computed
eigenvalues. More details on that aspect may be found in Appendix C.

We show in Fig. 8(b) the total wall-clock time for computing 5 eigenvalues closest to the shift s = 0.6i, using
mAL and MUMPS as inner solvers, as a function of the number of processes. The available memory is again
reported on the top x-axis. Similar conclusions as for the nonlinear solver can be made for memory consumption
with a multiplication factor of two, due to the use of complex instead of real algebra. From a wall-clock time point
of view, we observe, as for the nonlinear solver, that the mAL approach possesses much better scalability than
MUMPS, which leads to a faster computation. We note however that MUMPS is harder to beat with an iterative
approach when used in the eigensolver than in the nonlinear solver. The reason is that, in the Krylov–Schur method,
the very high cost of forming the full LU factorization is greatly amortized by the many inner solves realized with
it, whereas in the Newton method, each inner solve requires to build the factorization again.

As a conclusion, the mAL approach presents the double advantage of being much less memory-intensive than
the direct solver and also faster, even for the unfavorable case of eigenvalue computations.

5.4.2. Parallel performance on a large-scale 3D configuration
In this section, the 3D plate configuration is used, with a fine mesh, resulting in 75 million unknowns. The

parallel performance of our implementation is investigated for the nonlinear base flow solver and eigenvalue solver.

736 J. Moulin, P. Jolivet and O. Marquet / Computer Methods in Applied Mechanics and Engineering 351 (2019) 718–743

(a) Nonlinear solver (average time per Newton iteration) (b) Eigensolver (overall time for 5 eigenvalues, s = 0.6i)

Fig. 8. Comparison of mAL () and MUMPS () as inner solvers on (a) the nonlinear solver and (b) the eigensolver. The computation
is performed on the three-dimensional test case using a coarse mesh (4.8 million unknowns) and γ = 0.3. The gray area indicates when the
LU factorization is not feasible due to too large memory requirements. The dashed line represents ideal scalability.

Results were obtained on Curie, a system composed of 5040 nodes with two eight-core Intel Sandy Bridge
clocked at 2.7 GHz. The interconnect is an InfiniBand QDR full fat tree and the MPI implementation exploited
was bullxMPI version 1.2.9.2. All binaries and shared libraries were compiled with Intel compilers and Math
Kernel Library support (for dense linear algebra computations) version 18.0.1.163. Recent releases of FreeFEM
and PETSc/SLEPc were used (version 3.61 and 3.9.3 respectively). In all following plots and tables, the time spent
in the finite element kernel is never accounted for because we are mostly interested in the performance of the
preconditioner. Only the time spent in PETSc or SLEPc is reported.

5.4.2.1. Nonlinear solver. In this paragraph, we investigate the parallel performance of the nonlinear steady-
state solver. The inner Krylov solver is the flexible GMRES algorithm [61], which is stopped when the relative
unpreconditioned residual norm is lower than 10−1. The Newton method is stopped when the l2 norm of the residual
is lower than 10−6. As an initial guess for the computation at Re = 100, a solution at a lower Reynolds number
Re = 50 is first computed using a higher nonlinear outer tolerance of 10−4. Also note that in this preprocessing
step, all the domain decomposition information obtained from ParMETIS partitioning is dumped and will be used
in successive runs for the nonlinear and generalized eigenvalue solvers. In Table 2, the numerical performance of
the nonlinear solver is reported. One may notice that even if a high relative tolerance is used to stop the flexible
GMRES, very few Newton iterations (second column) are needed for the solver to converge, independently of
the number of subdomains (first column). The number of mAL-preconditioned inner iterations needed to reach
convergence, averaged over all Newton iterations, is reported in the third column. It is seen not to depend on the
number of processes. Eventually, in the last three columns, we show the average number of ASM-preconditioned
innermost iterations needed for each velocity block of PmAL to reach the desired convergence tolerance of 10−1

(see 4.3). A slight increase is observed with the number of processes. This is an expected feature of simple one-
level domain decomposition methods, like the additive Schwarz method, that are known to not scale numerically
[71].

In Fig. 9, the scalability of our implementation is shown, using the run with 256 processes as the reference, and
going up to 2048 processes. The parallel efficiency of this approach remains above 83%. The fact that one additional
Newton iteration is needed with 256 processes has to be highlighted, since it does improve the efficiency. Other
than that, because exact LU factorizations are used as subdomain solvers in the additive Schwarz method used for
each velocity field, the setup phase scales superlinearly (see the second column of the table in Fig. 9). Moreover,

J. Moulin, P. Jolivet and O. Marquet / Computer Methods in Applied Mechanics and Engineering 351 (2019) 718–743 737

Table 2
Numerical performance of the 3D nonlinear solver with respect to the number of processes
(Re = 100). The second column represents the number of Newton outer iterations, the third
is the number of mAL-preconditioned inner GMRES iterations per Newton step. The last three
columns correspond to the average number of ASM-preconditioned innermost GMRES iterations
for each velocity block per inner iteration.

P # of Newton
iterations

of iterations
per Newton it.

of iterations per
field (x, y, z)

256 6 83 30 12 19
512 5 81 31 13 20
1024 5 84 35 15 21
2048 5 84 44 17 27

Fig. 9. Scalability of the 3D nonlinear solver with respect to the number of processes.

because the number of iterations needed for the corresponding solvers only grows slightly, as shown in the three
last columns from Table 2, the solution phase also scales appropriately.

5.4.2.2. Eigensolver. We now evaluate the parallel performance of the eigensolver. The tolerance on the Krylov–
Schur algorithm is 10−6 whereas the relative tolerance for the inner linear solver is set6 to 10−4. The main difference
with the Newton method is that the multiple inner linear solves involve the very same shifted operator (J+sM) and
preconditioner PmAL. To improve the performance of the eigensolver, let us show first the effect of using a recycled
Krylov method for solving these systems, instead of the standard GMRES. This can be done by switching from the
KSP objects of PETSc to the iterative methods of the HPDDM library [72] which handle subspace recycling. In
particular, the flexible GCRO-DR method is used, with a recycled subspace between each linear solves of dimension
five. The following lines allow to switch between PETSc and HPDDM Krylov methods from within FreeFEM:

int recycle = getARGV("-recycle", 0); // use GMRES by default

int restart = getARGV("-restart", 200); // default to 200

real tolInner = getARGV("-inner_tol", 1.0e-4); // default to 10−4

string paramsKrylov = (recycle == 0 ? "-st_ksp_type fgmres " +

"-st_ksp_monitor -st_ksp_rtol " + tolInner +

" -st_ksp_gmres_restart " + restart + " -st_ksp_max_it 1000"

:

"-st_ksp_type hpddm -hpddm_st_krylov_method gcrodr " +

"-hpddm_st_recycle " + recycle + " -hpddm_st_max_it 1000" +

" -hpddm_st_verbosity 4 -hpddm_st_gmres_restart " + restart +

" -hpddm_st_tol " + tolInner + " -hpddm_st_variant flexible");

6 For the same reasons explained in 5.4.1.2, we use a larger tolerance for the inner linear solves than for the outer Krylov–Schur algorithm
(see also Appendix C).

738 J. Moulin, P. Jolivet and O. Marquet / Computer Methods in Applied Mechanics and Engineering 351 (2019) 718–743

Fig. 10. Effect of a recycled Krylov method on the performance of the eigensolver. The number of mAL-preconditioned inner iterations for
the flexible GMRES and GCRO-DR algorithms is compared for each linear solve of a Krylov–Schur iteration.

Table 3
Numerical performance of the 3D eigensolver with respect to the number of processes. The second and third
columns represent respectively the number of Krylov–Schur iterations and the number of linear solves (outer
iterations) per Krylov–Schur iteration. The fourth column is the number of mAL-preconditioned FGCRO-DR
inner iterations per linear solve. The last three columns correspond to the average number of innermost
ASM-preconditioned GMRES iterations for each velocity sub-block per inner iteration.

P # of eigensolver
iterations

of linear
solves

of iterations
per linear
solve

of iterations per
field (x, y, z)

512 7 7 120 7 10 11
1024 7 8 127 7 10 13
2048 7 8 119 10 13 17

In Fig. 10, the number of mAL-preconditioned inner linear iterations needed for each iterative method (FGMRES
or FGCRO-DR) to solve the sequence of linear systems of the first iteration of the Krylov–Schur algorithm is
reported. For this particular Krylov–Schur iteration, fifteen systems have to be solved. When using FGMRES, it
corresponds to a total of 3.751 inner linear iterations. When using FGCRO-DR, it corresponds to only 2.209 inner
linear iterations. Even though the solutions of all fifteen systems are not rigorously equal when switching from
FGMRES to FGCRO-DR, after the first iteration of the eigensolver, convergence is reached for the two eigenpairs
closest to the shift: −1.03.10−2

+ 0.57i and −7.81.10−2
+ 0.57i.

In all the following runs, FGCRO-DR is used in order to reduce the number of inner iterations. The number of
Krylov–Schur iterations needed to retrieve the requested eigenpairs is reported in the second column of Table 3. In
the third column is the average number of solved linear systems per eigensolver iteration. The average number of
mAL-preconditioned FGCRO-DR iterations (inner iterations) per linear solve (outer iteration) is presented in the
fourth column whereas the last three columns contain the average number of innermost iterations for each velocity
field, per application of PmAL. It was not possible to have the code run on 256 processes due to memory requirements
significantly higher than for the nonlinear solver. Indeed, we switch from a real-valued to a complex-valued problem
and the additional operators M and Lp are assembled explicitly. In Table 4, the scalability of our implementation is
shown, using the run with 512 processes as the reference, and going up to 2048 processes. The parallel efficiency of
this approach is approximately the same as for the nonlinear solver, though on a narrower range of process counts,
remaining above 82%.

J. Moulin, P. Jolivet and O. Marquet / Computer Methods in Applied Mechanics and Engineering 351 (2019) 718–743 739

Table 4
Scalability of the 3D eigensolver with respect to the number of
processes.

P Setup (s) Solve (s) Speedup

512 55.3 39,160.7 –
1024 25.7 24,508.3 1.6
2048 27.1 11,849.9 3.3

6. Conclusion

The stationary base flow as well as the eigenvalue computations involved in hydrodynamic linear stability analysis
require multiple solutions of linear systems based on the (shifted) Jacobian operator of the incompressible steady
Navier–Stokes equations. To solve such systems on large-scale configurations involving hundreds of millions of
unknowns, we proposed to use a Krylov subspace linear solver like the flexible GMRES algorithm, preconditioned
by the modified augmented Lagrangian (mAL) preconditioner [45]. On a two-dimensional bluff-body flow, we
studied numerically the performance of the mAL preconditioner for linear stability analysis purposes. We showed
in particular that this approach handles efficiently complex-valued shifts and thus is well-suited for the computations
of eigenvalues with possibly large frequencies, using the shift-and-invert spectral transformation. Then, the mAL
preconditioner was tested against some other widely used steady-state (PCD, SIMPLE) and time-stepping-based
(Stokes) preconditioners, all of them used in a sequential version. The mAL preconditioner was shown to require
lower numbers of GMRES iterations and to be faster than all its competitors.

In order to perform large-scale three-dimensional stability analysis computations, a parallel implementation of
the mAL preconditioner was presented and is made available online: https://github.com/prj-/moulin2019al. The
FreeFEM finite element language was used as a discretization kernel whereas PETSc and SLEPc were used as
distributed linear algebra backends. First, a comparison with the parallel direct solver MUMPS was presented on a
three-dimensional bluff-body flow configuration, using a coarse enough mesh to make the LU factorization possible.
The mAL approach required about one tenth as much memory and had better strong scaling properties. Despite the
attractiveness of a direct linear solver – when it can be afforded – for the eigenvalue computations (the factorization
is done once and re-used multiple times), the mAL approach turned out to be a faster alternative than the direct
approach, thanks to its much better parallel performance. Finally, the implementation was used on a fine mesh
resulting in 75 million unknowns and showed satisfying strong scaling properties up to 2048 processes, for both
the base flow and eigenvalue computations. The role of subspace recycling between the multiple consecutive linear
solves, inside the Krylov–Schur eigensolver, was tested and allowed significant performance gains.

Acknowledgments

This project has received funding from the European Research Council (ERC) under the European Union Horizon
2020 research and innovation program (grant agreement 638307). Moreover, this work was granted access to the
HPC resources of TGCC@CEA under the allocation A0030607519 made by GENCI.

Appendix A. Reproducibility

In addition to the few extracts of the code used in the paper, the interested reader can find the complete FreeFEM
code in the following repository: https://github.com/prj-/moulin2019al.

Appendix B. Definition of other block preconditioners

Here are defined the classical block preconditioners for incompressible Navier–Stokes that are compared to the
modified augmented Lagrangian approach in Section 5.3. Contrary to mAL, those preconditioners do not require
an augmentation. Thus, they are used without grad–div stabilization (γ = 0). Versions that incorporate a complex
shift s are proposed here.

Pressure convection–diffusion preconditioner The pressure convection–diffusion (PCD) preconditioner was
proposed by [41]:

PPCD =

(
A + sMu BT

0 Sp

)
, (17)

https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al

740 J. Moulin, P. Jolivet and O. Marquet / Computer Methods in Applied Mechanics and Engineering 351 (2019) 718–743

Table 5
Effect of linear solver tolerance on eigenvalue computation (Re = 40, γ = 0.7, εeig = 10−6, s = 0.7i).

εlin

of GMRES
iterations per
linear solve

of linear solves λ ω
σMq̂ + J(qb)q̂

2

10−1 15 12 4.48 · 10−2 6.90 · 10−1 1.5 · 10−4

10−2 28 10 3.77 · 10−2 7.01 · 10−1 2.6· 10−6

10−3 36 8 3.75 · 10−2 7.01 · 10−1 9.5 · 10−7

10−4 45 8 3.75 · 10−2 7.01 · 10−1 9.2 · 10−7

10−5 53 8 3.75 · 10−2 7.01 · 10−1 9.2 · 10−7

10−6 62 8 3.75 · 10−2 7.01 · 10−1 9.2 · 10−7

10−7 71 8 3.75 · 10−2 7.01 · 10−1 9.2 · 10−7

10−8 80 8 3.75 · 10−2 7.01 · 10−1 9.2 · 10−7

with Sp
−1

= −Mp
−1(Fp + sMp)Lp

−1, where Fp is a convection–diffusion operator built on the pressure space.
Compared to the classical PCD preconditioner for steady-state Navier–Stokes equations, the shift contribution sMp

is added to the pressure Schur complement approximation.

SIMPLE preconditioner The SIMPLE preconditioner was proposed as a solver by [40]. We use its preconditioner
version [73]:

PSIMPLE =

(
A + sMu 0

B Sp

) (
I diag(A + sMu)−1BT

0 I

)
, (18)

and Sp
−1

= −
[
Bdiag(A + sMu)−1BT

]−1.
Stokes preconditioner The Stokes preconditioning approach was popularized by [35] in the hydrodynamic stability
community. Tuckerman’s idea is two-fold:

(1) preconditioning the linearized Navier–Stokes problem Eq. (12) by the Stokes problem, i.e.,

PStokes =

(
AStokes + sMu BT

B 0

)
,

with AStokes = D + ∆t−1Mu and D contains only the diffusion terms. Note that the time-step contribution
∆t has no physical meaning here: it only represents some numerical parameter of the preconditioner. A
case-dependent optimal value may exist, as reported in [39]. We determined this optimal value numerically.

(2) applying the preconditioner by adapting a pre-existing time-stepping code, which significantly reduces the
development costs. In this work however, we prefer to apply PStokes

−1 by using a few inner iterations of
GMRES, preconditioned by:

PStokes, inner =

(
AStokes + sMu BT

0 Sp

)
,

with Sp
−1

= −Re−1Mp
−1

− (∆t + s)Lp
−1 [74]. A large relative tolerance of 10−2 is set for the inner

iterations, as we observed that further convergence of the inner iterations did not improve the convergence
of the outer GMRES iterations. Obviously, AStokes being block diagonal, applying PStokes, inner

−1 naturally
requires two scalar velocity solves (in 2D) and one pressure solve.

Note that, in Section 5.3, the GMRES iteration count reported for the Stokes preconditioner corresponds to the total
number of applications of PStokes, inner necessary to converge Eq. (12) to the desired tolerance.

Appendix C. Linear solver tolerance and eigenvalue convergence criterion

In cases where an iterative linear solver is used, the action of (J + sM)−1, required when applying the spectrally
transformed operator T in the Krylov–Schur algorithm (see Section 2.4), is approximated using some user-defined
tolerance. As a consequence, matrix T in Eq. (11) is replaced by some approximation T̃. It is usually recommended
to set the tolerance for the linear solver lower than the one prescribed to the eigensolver, so that the imprecision of

J. Moulin, P. Jolivet and O. Marquet / Computer Methods in Applied Mechanics and Engineering 351 (2019) 718–743 741

the linear solver does not pollute the eigensolver accuracy (see e.g. [70, §3.4.1]). Here, we re-evaluate this statement
numerically on the two-dimensional test case presented in Section 5.1.

The following numerical experiment is performed. We solve the eigenproblem (11) using a mAL-preconditioned
GMRES algorithm to apply (J + sM)−1. The relative tolerance of the GMRES algorithm εlin is varied between 10−8

and 10−1 while the tolerance of the Krylov–Schur algorithm εeig is kept constant to 10−6. Only one eigenvalue,
closest to the shift s = 0.7i, is demanded. In the second column of Table 5, the number of GMRES iterations
required to apply (J + sM)−1 is shown. The value is averaged over all applications of (J + sM)−1 to compute the
demanded eigenvalue. In the third column, the total number of applications of T̃ is shown. In the last three columns,
we monitor the eigenvalue and the discrete l2 norm of the eigenproblem residual. It is observed that one can in
practice increase εlin well above εeig = 10−6, without compromising significantly the accuracy of the computed
eigenvalue. At least up to εlin = 10−3, the computed eigenvalue is converged to satisfying accuracy, for a cost
divided by two with respect to the “safe choice” εlin = 10−6. Increasing εlin may thus allow some performance
improvement.

Finally, the interpretation of the last column of Table 5 deserves some further explanation. Indeed, one can
observe that, for εlin = 10−1 and εlin = 10−2, despite the fact that we kept εeig = 10−6, the Krylov–Schur algorithm
considered it had converged to an appropriate eigenvalue, while the residual was still above εeig. The reason to that
observation is that most Arnoldi-based eigensolver packages, such as SLEPc, use convergence criteria based on the
residual of the transformed problem Eq. (11), not the original one Eq. (6). As a consequence, the effect of using a
large linear tolerance εlin is to apply an approximate operator T̃ far from the exact one. But the eigenvalues of T̃ can
be computed to any prescribed tolerance by the Krylov–Schur algorithm. Note that, in SLEPc, a workaround is to
use the option -eps true residual which forces the computation of the residual on the original problem Eq. (6)
and thus is free from any approximation linked to the underlying linear solver. In this case, the effect of using a
large linear tolerance εlin would be to make the convergence of the Krylov–Schur algorithm increasingly slow (or
even impossible). This option being more costly, it should however be avoided for large-scale computations.

References

[1] P.G. Drazin, W.H. Reid, Hydrodynamic Stability, Cambridge University Press, 2004.
[2] P. Huerre, P.A. Monkewitz, Local and global instabilities in spatially developing flows, Annu. Rev. Fluid Mech. 22 (1) (1990) 473–537.
[3] V. Theofilis, Advances in global linear instability analysis of nonparallel and three-dimensional flows, Prog. Aerosp. Sci. 39 (4) (2003)

249–315.
[4] J.-M. Chomaz, Global instabilities in spatially developing flows: Non-normality and nonlinearity, Annu. Rev. Fluid Mech. 37 (1) (2005)

357–392.
[5] S. Bagheri, E. Åkervik, L. Brandt, D.S. Henningson, Matrix-free methods for the stability and control of boundary layers, AIAA J.

47 (5) (2009) 1057–1068.
[6] D. Sipp, O. Marquet, P. Meliga, A. Barbagallo, Dynamics and control of global instabilities in open-flows: a linearized approach, Appl.

Mech. Rev. 63 (3) (2010).
[7] V. Theofilis, Global linear instability, Annu. Rev. Fluid Mech. 43 (1) (2011) 319–352.
[8] H.A. Dijkstra, F.W. Wubs, A.K. Cliffe, E. Doedel, I.F. Dragomirescu, B. Eckhardt, A.Y. Gelfgat, A.L. Hazel, V. Lucarini, A.G.

Salinger, E.T. Phipps, S.U. Juan, H. Schuttelaars, L.S. Tuckerman, U. Thiele, Numerical bifurcation methods and their application to
fluid dynamics: Analysis beyond simulation, Commun. Comput. Phys. 15 (1) (2014) 1–45.

[9] J.-C. Loiseau, M.A. Bucci, S. Cherubini, J.-C. Robinet, Time-stepping and Krylov methods for large-scale instability problems, in:
Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics, Springer International Publishing, 2019, pp. 33–73.

[10] G.M. Shroff, H.B. Keller, Stabilization of unstable procedures: the recursive projection method, SIAM J. Numer. Anal. 30 (4) (1993)
1099–1120.

[11] E. Åkervik, L. Brandt, D.S. Henningson, J. Hœpffner, O. Marxen, P. Schlatter, Steady solutions of the Navier–Stokes equations by
selective frequency damping, Phys. Fluids 18 (6) (2006) 1–5.

[12] V. Citro, P. Luchini, F. Giannetti, F. Auteri, Efficient stabilization and acceleration of numerical simulation of fluid flows by residual
recombination, J. Comput. Phys. 344 (April) (2017) 234–246.

[13] G.E. Karniadakis, M. Israeli, S.A. Orszag, High-order splitting methods for the incompressible Navier–Stokes equations, J. Comput.
Phys. 97 (2) (1991) 414–443.

[14] J. Kim, P. Moin, Application of a fractional-step method to incompressible Navier–Stokes equations, J. Comput. Phys. 59 (2) (1985)
308–323.

[15] L.S. Tuckerman, D. Barkley, Bifurcation analysis for timesteppers, in: Numerical Methods for Bifurcation Problems and Large-Scale
Dynamical Systems, Springer, New York, NY, 2000, pp. 453–466.

[16] M. Caliari, P. Kandolf, A. Ostermann, S. Rainer, Comparison of software for computing the action of the matrix exponential, BIT
Numer. Math. 54 (1) (2014) 113–128.

http://refhub.elsevier.com/S0045-7825(19)30191-4/sb1
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb2
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb3
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb3
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb3
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb4
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb4
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb4
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb5
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb5
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb5
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb6
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb6
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb6
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb7
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb8
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb8
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb8
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb8
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb8
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb9
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb9
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb9
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb10
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb10
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb10
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb11
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb11
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb11
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb12
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb12
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb12
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb13
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb13
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb13
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb14
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb14
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb14
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb15
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb15
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb15
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb16
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb16
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb16

742 J. Moulin, P. Jolivet and O. Marquet / Computer Methods in Applied Mechanics and Engineering 351 (2019) 718–743

[17] M.W. Rostami, F. Xue, Robust linear stability analysis and a new method for computing the action of the matrix exponential, SIAM
J. Sci. Comput. 40 (5) (2018) A3344–A3370.

[18] P. Amestoy, I. Duff, J.-Y. L’Excellent, J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM
J. Matrix Anal. Appl. 23 (1) (2001) 15–41.

[19] X.S. Li, An overview of SuperLU: Algorithms, implementation, and user interface, ACM Trans. Math. Softw. 31 (3) (2005) 302–325.
[20] K.N. Christodoulou, L.E. Scriven, Finding leading modes of a viscous free surface flow: An asymmetric generalized eigenproblem, J.

Sci. Comput. 3 (4) (1988) 355–406.
[21] U. Ehrenstein, F. Gallaire, On two-dimensional temporal modes in spatially evolving open flows: The flat-plate boundary layer, J. Fluid

Mech. 536 (2005) 209–218.
[22] F. Sartor, C. Mettot, D. Sipp, Stability, receptivity, and sensitivity analyses of buffeting transonic flow over a profile, AIAA J. 53 (7)

(2015) 1980–1993.
[23] K.A. Cliffe, T.J. Garratt, A. Spence, Eigenvalues of the discretized Navier–Stokes equation with application to the detection of hopf

bifurcations, Adv. Comput. Math. 1 (3) (1993) 337–356.
[24] K. Meerbergen, D. Roose, Matrix transformations for computing rightmost eigenvalues of large sparse non-symmetric eigenvalue

problems, IMA J. Numer. Anal. 16 (3) (1996) 297–346.
[25] C.J. Mack, P.J. Schmid, A preconditioned Krylov technique for global hydrodynamic stability analysis of large-scale compressible

flows, J. Comput. Phys. 229 (3) (2010) 541–560.
[26] Y. Saad, Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices, Linear Algebra Appl. 34 (1980)

269–295.
[27] O. Marquet, M. Larsson, Global wake instabilities of low aspect-ratio flat-plates, Eur. J. Mech. B/Fluids 49 (2015) 400–412.
[28] S. Bagheri, P. Schlatter, P.J. Schmid, D.S. Henningson, Global stability of a jet in crossflow, J. Fluid Mech. 624 (2009) 33–44.
[29] J.-C. Loiseau, J.-C. Robinet, S. Cherubini, E. Leriche, Investigation of the roughness-induced transition: Global stability analyses and

direct numerical simulations, J. Fluid Mech. 760 (2014) 175–211.
[30] V. Citro, F. Giannetti, P. Luchini, F. Auteri, Global stability and sensitivity analysis of boundary-layer flows past a hemispherical

roughness element, Phys. Fluids 27 (8) (2015) 084110.
[31] L.S. Tuckerman, Steady-state solving via Stokes preconditioning; Recursion relations for elliptic operators, in: D.L. Dwoyer, M.Y.

Hussaini, R.G. Voigt (Eds.), 11th International Conference on Numerical Methods in Fluid Dynamics, Springer Berlin Heidelberg,
Berlin, Heidelberg, 1989, pp. 573–577.

[32] C.K. Mamun, L.S. Tuckerman, Asymmetry and hopf bifurcation in spherical couette flow, Phys. Fluids 7 (1) (1994) 80–91.
[33] D. Barkley, L.S. Tuckerman, Stokes Preconditioning for the inverse power method, in: P. Kutler, J. Flores, J.-J. Chattot (Eds.), Lecture

Notes in Physics: Proceedings of the Fifteenth International Conference on Numerical Methods in Fluid Dynamics, Springer, New
York, 1997, pp. 75–76.

[34] A. Bergeon, D. Henry, H. Benhadid, L.S. Tuckerman, Marangoni convection in binary mixtures with soret effect, J. Fluid Mech. 375
(1998) 143–177.

[35] L.S. Tuckerman, F. Bertagnolio, O. Daube, P. Le Quéré, D. Barkley, Stokes preconditioning for the inverse Arnoldi method, in: D.
Henry, A. Bergeon (Eds.), Continuation Methods for Fluid Dynamics, Aussois, 2000, pp. 241–255.

[36] I. Mercader, O. Batiste, A. Alonso, Continuation of travelling-wave solutions of the Navier–Stokes equations, Internat. J. Numer.
Methods Fluids 52 (7) (2006) 707–721.

[37] L.S. Tuckerman, Laplacian Preconditioning for the inverse Arnoldi method, Commun. Comput. Phys. 18 (05) (2015) 1336–1351.
[38] M. Brynjell-Rahkola, L.S. Tuckerman, P. Schlatter, D.S. Henningson, Computing optimal forcing using Laplace preconditioning,

Commun. Comput. Phys. 22 (05) (2017) 1508–1532.
[39] C. Beaume, Adaptive Stokes preconditioning for steady incompressible flows, Commun. Comput. Phys. 22 (02) (2017) 494–516.
[40] S.V. Patankar, D.B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,

Numer. Predict. Flow Heat Transf. Turbul. Combust. (1983) 54–73.
[41] D. Kay, D. Loghin, A. Wathen, A preconditioner for the steady-state Navier–Stokes equations, SIAM J. Sci. Comput. 24 (1) (2002)

237–256.
[42] M. Benzi, M.A. Olshanskii, An augmented Lagrangian-based approach to the oseen problem, SIAM J. Sci. Comput. 28 (6) (2006)

2095–2113.
[43] M. Benzi, M.A. Olshanskii, Field-of-values convergence analysis of augmented Lagrangian preconditioners for the linearized

Navier–Stokes problem, SIAM J. Numer. Anal. 49 (2) (2011) 770–788.
[44] T. Heister, G. Rapin, Efficient augmented Lagrangian-type preconditioning for the Oseen problem using grad–div stabilization, Internat.

J. Numer. Methods Fluids 71 (1) (2013) 118–134.
[45] M. Benzi, M.A. Olshanskii, Z. Wang, Modified augmented Lagrangian preconditioners for the incompressible Navier–Stokes equations,

Internat. J. Numer. Methods Fluids 66 (4) (2011) 486–508.
[46] M. Benzi, Z. Wang, Analysis of augmented Lagrangian-based preconditioners for the steady incompressible Navier–Stokes equations,

SIAM J. Sci. Comput. 33 (5) (2011) 2761–2784.
[47] M. Benzi, Z. Wang, A parallel implementation of the modified augmented Lagrangian preconditioner for the incompressible

Navier–Stokes equations, Numer. Algorithms 64 (1) (2013) 73–84.
[48] A. Segal, M. Ur Rehman, C. Vuik, Preconditioners for incompressible Navier–Stokes solvers, Numer. Math. 3 (3) (2010) 245–275.
[49] X. He, C. Vuik, Comparison of some preconditioners for the incompressible Navier–Stokes equations, Numer. Math. 9 (2) (2016)

239–261.
[50] P.E. Farrell, L. Mitchell, F. Wechsung, An augmented Lagrangian preconditioner for the 3D stationary incompressible Navier–Stokes

equations at high Reynolds number, 2018, arXiv:1810.03315.

http://refhub.elsevier.com/S0045-7825(19)30191-4/sb17
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb17
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb17
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb18
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb18
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb18
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb19
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb20
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb20
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb20
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb21
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb21
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb21
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb22
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb22
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb22
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb23
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb23
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb23
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb24
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb24
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb24
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb25
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb25
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb25
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb26
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb26
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb26
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb27
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb28
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb29
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb29
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb29
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb30
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb30
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb30
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb31
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb31
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb31
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb31
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb31
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb32
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb33
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb33
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb33
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb33
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb33
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb34
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb34
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb34
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb35
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb35
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb35
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb36
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb36
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb36
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb37
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb38
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb38
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb38
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb39
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb40
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb40
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb40
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb41
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb41
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb41
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb42
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb42
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb42
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb43
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb43
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb43
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb44
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb44
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb44
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb45
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb45
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb45
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb46
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb46
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb46
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb47
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb47
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb47
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb48
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb49
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb49
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb49
http://arxiv.org/abs/1810.03315
http://arxiv.org/abs/1810.03315
http://arxiv.org/abs/1810.03315
http://arxiv.org/abs/1810.03315
http://arxiv.org/abs/1810.03315
http://arxiv.org/abs/1810.03315
http://arxiv.org/abs/1810.03315
http://arxiv.org/abs/1810.03315
http://arxiv.org/abs/1810.03315
http://arxiv.org/abs/1810.03315
http://arxiv.org/abs/1810.03315
http://arxiv.org/abs/1810.03315
http://arxiv.org/abs/1810.03315
http://arxiv.org/abs/1810.03315
http://arxiv.org/abs/1810.03315
http://arxiv.org/abs/1810.03315

J. Moulin, P. Jolivet and O. Marquet / Computer Methods in Applied Mechanics and Engineering 351 (2019) 718–743 743

[51] M.A. Olshanskii, M. Benzi, An augmented Lagrangian approach to linearized problems in hydrodynamic stability, SIAM J. Sci. Comput.
30 (3) (2008) 1459–1473.

[52] F. Hecht, New development in FreeFem++, J. Numer. Math. 20 (3–4) (2012) 251–266.
[53] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G.

Knepley, L.C. McInnes, K. Rupp, B.F. Smith, S. Zampini, H. Zhang, PETSc web page, 2019, http://www.mcs.anl.gov/petsc.
[54] V. Hernandez, J.E. Roman, V. Vidal, SLEPC: A scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans.

Math. Software 31 (3) (2005) 351–362.
[55] M. Olshanskii, G. Lube, T. Heister, J. Löwe, Grad–div stabilization and subgrid pressure models for the incompressible Navier–Stokes

equations, Comput. Methods Appl. Mech. Engrg. 198 (49) (2009) 3975–3988.
[56] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, first ed., in: Springer Series in Computational Mathematics, vol. 15,

Springer-Verlag, New York, 1991.
[57] M.A. Olshanskii, A low order Galerkin finite element method for the Navier–Stokes equations of steady incompressible flow: a

stabilization issue and iterative methods, Comput. Methods Appl. Mech. Engrg. 191 (47) (2002) 5515–5536.
[58] M.A. Olshanskii, A. Reusken, Grad–div stabilization for Stokes equations, Math. Comp. 73 (248) (2004) 1699–1718.
[59] A. Linke, L.G. Rebholz, N.E. Wilson, On the convergence rate of grad–div stabilized Taylor–Hood to Scott–Vogelius solutions for

incompressible flow problems, J. Math. Anal. Appl. 381 (2) (2011) 612–626.
[60] G.W. Stewart, A Krylov–Schur algorithm for large eigenproblems, SIAM J. Matrix Anal. Appl. 23 (3) (2002) 601–614.
[61] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput. 14 (2) (1993) 461–469.
[62] P. Jolivet, V. Dolean, F. Hecht, F. Nataf, C. Prud’homme, N. Spillane, High performance domain decomposition methods on massively

parallel architectures with FreeFem++, J. Numer. Math. 20 (3–4) (2012) 287–302.
[63] T.F. Chan, H.A. Van Der Vorst, Approximate and incomplete factorizations, in: Parallel Numerical Algorithms, Springer, 1997, pp.

167–202.
[64] M. Adams, H. Bayraktar, T. Keaveny, P. Papadopoulos, Ultrascalable implicit finite element analyses in solid mechanics with over a

half a billion degrees of freedom, in: Proceedings of the 2004 ACM/IEEE Conference on Supercomputing, in: SC04, IEEE Computer
Society, 2004, pp. 34:1–34:15.

[65] C. Geuzaine, J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, Internat. J.
Numer. Methods Engrg. 79 (11) (2009) 1309–1331, http://geuz.org/gmsh.

[66] G. Karypis, V. Kumar, A parallel algorithm for multilevel graph partitioning and sparse matrix ordering, J. Parallel Distrib. Comput.
48 (1) (1998) 71–95.

[67] M. Benzi, D. Bertaccini, Block preconditioning of real-valued iterative algorithms for complex linear systems, IMA J. Numer. Anal.
28 (3) (2008) 598–618.

[68] L.S. Tuckerman, J. Langham, A. Willis, Order-of-magnitude speedup for steady states and traveling waves via Stokes preconditioning
in channelflow and openpipeflow, Comput. Methods Appl. Sci. 50 (2019) 3–31.

[69] M.C. Iorio, L.M. González, E. Ferrer, Direct and adjoint global stability analysis of turbulent transonic flows over a NACA0012 profile,
Internat. J. Numer. Methods Fluids 76 (3) (2014) 147–168.

[70] J.E. Roman, C. Campos, E. Romero, A. Tomás, SLEPc Users manual scalable library for eigenvalue problem computations, 2019, htt
p://slepc.upv.es/documentation/slepc.pdf.

[71] V. Dolean, P. Jolivet, F. Nataf, An Introduction to Domain Decomposition Methods: Algorithms, Theory and Parallel Implementation,
SIAM, 2015.

[72] P. Jolivet, P.-H. Tournier, Block iterative methods and recycling for improved scalability of linear solvers, in: Proceedings of the 2016
International Conference for High Performance Computing, Networking, Storage and Analysis, SC16, IEEE, 2016.

[73] H.C. Elman, V. Howle, J. Shahid, R. Shuttleworth, R.S. Tuminaro, A taxonomy and comparison of parallel block multi-level
preconditioners for the incompressible Navier–Stokes equations, J. Comput. Phys. 227 (3) (2008) 1790–1808.

[74] J. Cahouet, J.-P. Chabard, Some fast 3D finite element solvers for the generalized Stokes problem, Internat. J. Numer. Methods Fluids
8 (1988) 869–895.

http://refhub.elsevier.com/S0045-7825(19)30191-4/sb51
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb51
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb51
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb52
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb54
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb54
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb54
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb55
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb55
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb55
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb56
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb56
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb56
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb57
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb57
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb57
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb58
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb59
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb59
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb59
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb60
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb61
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb62
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb62
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb62
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb63
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb63
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb63
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb64
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb64
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb64
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb64
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb64
http://geuz.org/gmsh
http://geuz.org/gmsh
http://geuz.org/gmsh
http://geuz.org/gmsh
http://geuz.org/gmsh
http://geuz.org/gmsh
http://geuz.org/gmsh
http://geuz.org/gmsh
http://geuz.org/gmsh
http://geuz.org/gmsh
http://geuz.org/gmsh
http://geuz.org/gmsh
http://geuz.org/gmsh
http://geuz.org/gmsh
http://geuz.org/gmsh
http://geuz.org/gmsh
http://geuz.org/gmsh
http://geuz.org/gmsh
http://geuz.org/gmsh
http://geuz.org/gmsh
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb66
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb66
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb66
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb67
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb67
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb67
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb68
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb68
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb68
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb69
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb69
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb69
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb71
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb71
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb71
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb72
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb72
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb72
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb73
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb73
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb73
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb74
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb74
http://refhub.elsevier.com/S0045-7825(19)30191-4/sb74

	Augmented Lagrangian preconditioner for large-scale hydrodynamic stability analysis
	Introduction
	Methods for linear stability analysis in hydrodynamics
	Governing equations
	Spatial discretization
	Nonlinear steady-state solver
	Linear eigensolver

	An augmented Lagrangian approach for the shifted Jacobian matrix
	Parallel implementation with FreeFEM and its interface to PETSc/SLEPc
	Outer solvers
	Inner mAL-preconditioned linear solvers
	Innermost velocity and pressure linear solvers

	Numerical results
	Two- and three-dimensional test cases
	Influence of numerical and physical parameters
	Effect of the augmentation parameter
	Effect of the shift parameter
	Effect of the mesh refinement and Reynolds number

	Comparison with other block preconditioners
	Performance of the parallel implementation
	Comparison with a direct solver on a small-scale 3D configuration
	Parallel performance on a large-scale 3D configuration

	Conclusion
	Acknowledgments
	Appendix A Reproducibility
	Appendix B Definition of other block preconditioners
	Appendix C Linear solver tolerance and eigenvalue convergence criterion
	References

