
https://doi.org/10.1007/s00158-018-2023-2

EDUCATIONAL ARTICLE

Geometrical shape optimization in fluid mechanics using FreeFem++

Charles Dapogny1 · Pascal Frey2,3 · Florian Omnès2 · Yannick Privat2

Received: 19 April 2017 / Revised: 15 May 2018 / Accepted: 28 May 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
In this article, we present simple and robust numerical methods for two-dimensional geometrical shape optimization
problems, in the context of viscous flows driven by the stationary Navier-Stokes equations at low Reynolds number. The
salient features of our algorithm are exposed with an educational purpose; in particular, the numerical resolution of the
nonlinear stationary Navier-Stokes system, the Hadamard boundary variation method for calculating the sensitivity of the
minimized function of the domain, and the mesh update strategy are carefully described. Several pedagogical examples
are discussed. The corresponding program is written in the FreeFem++ environment, and it is freely available. Its chief
features—and notably the implementation details of the main steps of our algorithm—are carefully presented, so that it can
easily be handled and elaborated upon to deal with different, or more complex physical situations.

Keywords Shape optimization · Shape sensitivity · Fluid mechanics · Educational article · Numerical algorithm

1 Introduction

The first industrial developments of shape optimization
in contexts involving fluid mechanics arose in the fields
of aeronautic and aerospatial engineering. These develop-
ments were motivated by the tremendous production and
running costs of aircraft: even small improvements on the

Y. Privat was partially supported by the Project ‘Analysis and
simulation of optimal shapes—application to lifesciences’ of the
Paris City Hall.

� Florian Omnès
florian.omnes@upmc.fr

Charles Dapogny
charles.dapogny@univ-grenoble-alpes.fr

Pascal Frey
pascal.frey@upmc.fr

Yannick Privat
yannick.privat@upmc.fr

1 Univ. Grenoble Alpes, CNRS, Grenoble INP,
LJK, 38000 Grenoble, France

2 CNRS UMR 7598, Laboratoire Jacques-Louis Lions
Sorbonne Universités, UPMC Univ Paris 06, 75005,
Paris, France

3 Institut des Sciences du Calcul et des Données (ISCD),
Sorbonne Universités, UPMC Univ Paris 06, 75005,
Paris, France

performance of a design entail very large savings. Perhaps
the most famous issue in this field is the design optimiza-
tion of an airfoil, which dates back to at least 1964 (Carlson
and Middleton 1964); see also Hicks and Henne (1978),
Hicks et al. (1974), and Pironneau (1974) where optimal
profiles for minimum drag problems are calculated thanks
to shape sensitivity analyzes. We generally refer to Gun-
zburger (2003), Chap. 1 for a historical perspective about
the emergence of optimal design techniques in the context
of fluid mechanics. Since the aforementioned pioneering
works, applications of shape optimization in fluid mechan-
ics have raised a great interest in various areas such as
the automotive industry—see Choi et al. (1997) about the
numerical optimization of a cooling fan—or in compu-
tational biology: for instance, in Abraham et al. (2005),
Agoshkov et al. (2006), the design optimization of an
artery graft for preventing the formation of a stenosis is
investigated from a numerical point of view.

Let us briefly outline the main features of the most
popular shape optimization strategies in the literature,
without looking for exhaustivity. For more in-depth
discussions in the context of fluid mechanics, we refer to
Gunzburger (2003), Mohammadi and Pironneau (2010), or
to the review article (Mohammadi and Pironneau 2004).
Any shape optimization method relies on a parametrization
of shapes, that is, on the definition of a set of design
variables. Depending on the situation, these design variables
may be physical parameters of shapes (the length of some

Structural and Multidisciplinary Optimization (2018) 58:2761–2788

/ Published online: 19 June 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-018-2023-2&domain=pdf
http://orcid.org/0000-0001-8190-4981
mailto: florian.omnes@upmc.fr
mailto: charles.dapogny@univ-grenoble-alpes.fr
mailto: pascal.frey@upmc.fr
mailto: yannick.privat@upmc.fr

C. Dapogny et al.

pipe, or thickness of a region), control points of a CAD
description, or the vertices of a meshed representation. In
all cases, the sensitivity (i.e. derivative) of the objective
and constraint functionals of the optimization problem
with respect to the design variables—which is a key
ingredient in most numerical optimization algorithms—
can be evaluated either by approximate methods (for
instance by finite differences featuring small perturbations
of the parameters), or analytically, by relying on adjoint
techniques from optimal control theory (Jameson 1988;
Lions 1971; Pironneau 2012). In this last class of methods,
which is by now quite popular, these sensitivities may
be calculated at the discrete level (i.e. the derivative
of the finite-dimensional functional resulting from the
discretization of the shape and the physical equations
is considered), which requires a perfect knowledge of
the discretization and numerical methods involved in the
resolution of the flow equations (but allows for the use
of automatic differentiation methods). The opposite view
consists in calculating first the derivative of the optimized
criterion at the continuous level, then in discretizing it when
it comes to the numerical implementation. This ‘continuous’
approach relies on advanced mathematical tools, but the
stages of the optimization process associated with the
calculation of the derivatives and the numerical resolution
of the mechanical problem are more independent.

In any event, a great numerical challenge faced by
all these methods is that of updating the design of the
shape from one iteration of the process to the next, while
avoiding that the numerical representation becomes invalid.
For instance, if the shape is consistently described by
means of a computational mesh, the latter is likely to
develop self-intersecting elements in the course of the
optimization process, causing it to abort prematurely; see
the discussion in Section 3.4. Recently, several strategies
have been devised to circumvent this difficulty, and more
generally to allow for more freedom in terms of the variety
of designs that can be represented, to the point that they
make it possible to account for changes in their topology.

In this direction, quite popular density-based methods
in structural mechanics—and notably the famous SIMP
method (see Bendsoe and Sigmund 2013 and references
therein)—have been introduced in the context of fluid
mechanics in Borrvall and Petersson (2003); see also Pingen
et al. (2007) and Aage et al. (2008), where a large-scale
example is discussed. These relaxation methods rely on
an extension of the set of admissible designs: ‘black-and-
white’ shapes � contained in a fixed computational domain
D, or equivalently their characteristic function χ : D →
{0, 1}, taking values 1 inside �, and 0 in the ‘void’ region
D \ �, are replaced with density functions ρ : D →

[0, 1], which may assume intermediate, ‘grayscale’ values
in (0, 1). The flow equations have then to be given an
appropriate meaning to account for the presence of ‘void’
and ‘grayscale’ regions. This is typically achieved by adding
a ρ-dependent damping term (or Brinkman’s law) to the
flow equations (Borrvall and Petersson 2003), a heuristic
inspired from the theory of porous media whereby the
void is filled with a fluid with very low permeability, thus
mimicking no slip boundary conditions at the interface
between the fluid and void domains (see Guest and Prévost
2006 and Evgrafov 2006, then Gersborg-Hansen et al. 2005
for a generalization to the case of Navier-Stokes flows).
Let us eventually mention the contribution (Kreissl et al.
2011b) where topology optimization problems are tackled
in the context of the unsteady Navier-Stokes equations, and
reveal the limitations of this penalization approach as far
as the accuracy of the resolution of the flow equations is
concerned.

Another class of shape and topology optimization
strategies relies on the level set method, pioneered in
Osher and Sethian (1988), then introduced in structural
optimization in Sethian and Wiegmann (2000), Allaire et al.
(2004), Wang et al. (2003). Such methods describe a shape
� via the use of a scalar function φ defined on the whole
computational domain D: the negative subdomain of φ

coincides with �, while its positive subdomain accounts for
void (or, in practice, another fluid with low permeability,
according to the aforementioned ‘Brinkman’ penalization
approximation). In the two-dimensional work (Duan et al.
2008), the level set method is used to deal with Navier-
Stokes flows, in a variational framework which alleviates
the need for the redistancing stage inherent to many level
set based algorithms; this idea is continued in Zhou and Li
(2008) in the three-dimensional setting. See also Bruneau
et al. (2013) for another use of the Level Set method in
the context of Navier-Stokes flows. Recent contributions
have proposed alternative efficient level set methods where
the flow equations are solved by the Lattice Boltzmann
method (Pingen et al. 2007; Kreissl et al. 2011a) or
the Extended Finite Element method (Kreissl and Maute
2012), alleviating the need for the ‘Brinkman’ penalization
method. On a different note, in Challis and Guest (2009a),
the Level Set method is used to combine the information
supplied by shape and topological derivatives, in the context
of Stokes flows, in two and three space dimensions.

Eventually, let us also mention phase-field methods,
which share a lot of features with level set methods, except
for the fact that they bring into play shapes, or phases, with
‘thickened boundaries’ (Garcke et al. 2015).

Following the lead of Sigmund (2001) and Allaire and
Pantz (2006), which take place in the context of structural

2762

Geometrical shape optimization in fluid mechanics using FreeFem++

mechanics, this article is a pedagogical introduction
to several basic shape optimization techniques in fluid
mechanics. The discussion is didactic: we deliberately
keep technicalities to a minimum, and provide adequate
references when needed. We present a simple numerical
framework, yet robust enough to deal with physically
relevant situations, which is dedicated to solving shape
optimization problems in the context of fluid mechanics.
The proposed examples can be easily reproduced and
elaborated upon to deal with more advanced models.

In the setting of the stationary Navier-Stokes equations
at low Reynolds number, we optimize shapes in terms
e.g. of the dissipated viscous energy, under volume or
perimeter constraints. To this end, we rely on an augmented
Lagrangian algorithm based on the first order information
supplied by shape derivatives, in the sense of the Hadamard
boundary variation method. From the numerical point of
view, shapes are represented by a computational mesh, on
which the flow equations are solved owing to the Finite
Element method. The update of the shape between each
iteration of the optimization process is achieved by moving
the vertices of this mesh according to the calculated descent
direction.

The numerical developments proposed in this article rely
on the FreeFem++ (Hecht et al. 2005) software, a free
environment allowing to solve a wide variety of Partial
Differential Equations (PDE for short) using the Finite
Element method within a few command lines.

A particular attention has been paid to the development
of a user-friendly source code, which is available online at

https://github.com/flomnes/optiflow

with the hope that it serve as a useful basis for further
investigations.

The remainder of this article is organized as follows. In
Section 2, we introduce the model physical problem at stake,
as well as the shape optimization problem considered in this
context. In passing, we recall in an elementary way some
basic facts about shape derivatives. In Section 3, we describe
in more details the main ingredients of the proposed numer-
ical method: after a short motivating outline in Section 3.1,
we discuss the salient features of our shape optimization algo-
rithm in Sections 3.2, 3.3, 3.4, 3.5 and 3.6; a sketch of
this algorithm is then provided in Section 3.7. Section 4
is then a short guide of our practical implementation; it
is expected that, together with the thorough comments left
throughout our code, this will allow the user to define
and solve his own shape optimization test cases in a user-
friendly way. In Section 5, we introduce and comment five
test cases which are dealt with by our algorithm. Finally,
Section 6 concludes by evoking limitations of our approach

as well as perspectives for possible improvements and
extensions.

Readers primarily interested in the practical use of our
optimization algorithm may go directly to Sections 3.7 and 4
where it is precisely described, returning to Sections 2 and 3
when theoretical highlights are needed.

2 Shape optimization for flows governed
by the Navier-Stokes equations

In this section, we present the model physical situation and
the shape optimization problem at stake, together with the
necessary theoretical background. Notice that, while the
concrete applications discussed in this article arise in two
space dimensions (see Section 5), most of the presented
techniques are available in the general, d-dimensional
setting. For this reason, the discussion takes place in d

dimensions inasmuch as it is possible without giving up
simplicity and clarity.

2.1 The Navier-Stokes equations

In our applications, shapes are smooth bounded domains
� ⊂ R

d (d = 2, 3 in practice), occupied by a homogeneous
Newtonian fluid with kinematic viscosity ν > 0. The
boundary ∂� is made of three disjoint regions: ∂� = �in ∪
�out ∪ �, where

– �in is the ‘inlet’, on which a known velocity profile uin

is imposed;
– �out is the ‘outlet’, which is free from of surface forces;
– � is the ‘free’ boundary; no slip boundary conditions

are imposed on �, accounting for the fact that the fluid
particles are stuck on it;

see Fig. 1 for an illustration. In the applications ahead, �

is the only region of ∂� which is subject to optimization,
i.e. �in and �out are fixed. From the physical point of view,
� may represent a mammal’s lung, a duct in a ventilation
system or a water radiator, etc.

The equilibrium behavior of the fluid inside � is
classically described in terms of its (vector) velocity field

Fig. 1 Illustration of the model setting introduced in Section 2

2763

https://github.com/flomnes/optiflow

C. Dapogny et al.

u = (u1, ..., ud) : � → R
d and (scalar) pressure p : � →

R, which solve the stationary incompressible Navier-Stokes
equations:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−ν	u + (u · ∇)u + ∇p = 0 in �,

div(u) = 0 in �,

u = uin on �in,

u = 0 on �,

σ(u, p)n = 0 on �out.

(1)

In the above system, the stress tensor σ(u, p) is defined by

σ(u, p) = 2νe(u) − pI, where e(u) = 1

2
(∇uT + ∇u).

From the physical point of view, the first equation in
(1) is the law of balance of momentum between viscous
forces −ν	u, acceleration forces (u · ∇)u and pressure
forces ∇p. The second equation div(u) = 0 accounts
for the incompressibility of the fluid. Because of this
incompressibility feature, a simple calculation allows to
rewrite the law of balance of momentum under the
equivalent form:

−div(σ (u, p)) + (u · ∇)u = 0.

For further reference, let us recall that this nonlinear
system is often considered from the variational viewpoint,
in particular when it comes to its numerical resolution using
FreeFem++; the pair (u, p) satisfies:

For all (v, q) s.t. v = 0 on �in,
{

a(u, v) + c(u, u, v) + b(v, p) = 0
b(u, q) = 0

(2)

where we have defined

a(u, v) = 2ν

∫

�

e(u) : e(v) dx,

b(u, p) = −
∫

�

p div(u) dx,

c(u, v,w) =
∫

�

(u · ∇)v · w dx,

and the notation A : B stands for the usual Frobenius
inner product of two d × d matrices A, B, that is A :
B = ∑d

i,j=1 AijBij . In the following, we also denote by

||A||= (A : A)1/2 the associated Frobenius norm.
In the dimensionless version (1), (2) of the Navier-Stokes

equations, the Reynolds number Re is proportional to 1/ν:
it is an indicator of the type of regime of the flow (Munson
et al. 2013). At low Reynolds number, viscous effects are
prevailing and the flow is laminar; in particular, its velocity
stays relatively low. On the contrary, at moderate to high
Reynolds number, convective forces become dominant and
the flow is turbulent. The theoretical and numerical study
of (1) is notoriously much harder in the latter situation, and
still leaves room for many open questions. In the present,
introductory work, we limit ourselves to the low Reynolds

number regime (namely, Re = 200 is used in the practical
examples of Section 5, although values up to 1000 have
provided satisfactory numerical results as well).

Remark 1 Let us say a few words about the functional
setting and well-posedness of the stationary Navier-Stokes
system (1). When the viscosity ν is large enough, i.e.
the Reynolds number Re is low, (1) is well-posed. It
has a unique weak solution (u, p) ∈ H 1(�)d × L2

0(�),
where L2

0(�) := {
p ∈ L2(�),

∫

�
p dx = 0

}
, in the sense

that the variational problem (2) is fulfilled; see Temam
(1977), Chapter II about these matters. In the following, we
systematically assume ν to be large enough so that (1) is
well-posed.

2.2 Statement of the shape optimization problem

In the context of Section 2.1, the shape optimization
problem of interest reads

min
�∈Oad

J (�) s.t. G(�) = 0. (3)

Here, the objective criterion J (�) may stand for

– The energy E(�) dissipated by the fluid owing to the
work of viscous forces, i.e.

E(�) =
∫

�

σ(u, p) : e(u) dx = 2ν

∫

�

‖e(u)‖2 dx,

(4)

– A least-square discrepancy

D(�) = 1

2

∫

�out

|u − uref|2 ds (5)

between the velocity u of the fluid, solution to (1),
and a given reference profile uref. Such criteria are
often involved in shape optimization-based methods
for the detection or the reconstruction of an obstacle
immersed in a fluid from the data of boundary
measurements (Badra et al. 2011; Litman et al. 1998).

As we have mentioned in Section 2.1, all the considered
domains enclose the inlet �in and the outlet �out as (fixed)
subsets of their boundaries, so that the free boundary � is
the only region of ∂� subject to optimization. Accordingly,
the set Oad of admissible domains featured in (3) reads:

Oad = {� ⊂ R
d , open, smooth and bounded, such that

�in ∪ �out ⊂ ∂�} (6)

Last but not least, as far as the constraint functional
G(�) is concerned, we shall restrict ourselves to equality
constraints on the volume Vol(�) = ∫

�
dx or the perimeter

Per(�) = ∫

∂�
ds of shapes, namely:

G(�) = Vol(�) − VT , or G(�) = Per(�) − PT

2764

Geometrical shape optimization in fluid mechanics using FreeFem++

for some given volume or perimeter target values VT and
PT .

Remark 2 The existence of global minimizers of problems
of the form (3) is a long-standing question in shape
optimization theory, not only in the context of fluid
mechanics, but already in simpler situations, bringing into
play the conductivity equation, or the linearized elasticity
system. Let us simply mention that, in order to guarantee the
existence of optimal shapes, two classical remedies consist
in either restricting the set of admissible shapes (for instance
by adding constraints on the perimeter, or the regularity of
shapes), or on the contrary in enlarging this set, so that it
includes ‘density functions’, and not only ‘black and white’
shapes. See for instance Bucur and Buttazzo (2002), Henrot
and Pierre (2005), Sokołowski and Zolésio (1992) about
these issues, or Henrot and Privat (2008), Henrot and Privat
(2010), Bergounioux and Privat (2013) in the context of
fluid mechanics.

Often, in numerical practice, one is rather interested
in searching for local minimizers of (3), which are close
to an initial guess inspired by physical intuition. These
are the ‘optimal’ shapes which are typically delivered by
local optimization methods, such as the steepest-descent
algorithms used in the present article.

2.3 Shape sensitivity analysis using Hadamard’s
boundary variationmethod

Most optimization algorithms—such as steepest-descent
methods—rely on the knowledge of the derivatives of the
objective and constraint functionals. As we have already
hinted at in the introduction, two different paradigms exist
in the context of PDE constrained optimization problems
of the form (3). In a nutshell, in ‘discretize-then-optimize’
approaches, the optimized domain is first discretized into
a set of design variables (for instance, the vertices of a
mesh); the PDE system (1) becomes finite-dimensional (it
is e.g. discretized using a Finite Element method), and its
coefficients depend on the design variables; accordingly,
the objective and constraint functionals J (�) and G(�)

are functions of the design variables, and the derivatives of
these discrete functionals are calculated. On the contrary,
‘optimize-then-discretize’ approaches advocate to calculate
the derivatives of J (�) and G(�) at the continuous level;
the resulting theoretical formulae are then discretized by
relying on a discretization of the domain and of the PDE
system (1).

The approach described in this article belongs to
the second category, and therefore requires to compute
derivatives with respect to the domain. Several ways exist
to define a notion of shape derivative, and we rely on
Hadamard’s boundary variation method, a brief sketch of

which is now provided; see for instance to Henrot and Pierre
(2005), Chap. 5, or Allaire (2007), Murat and Simon (1976)
for in-depth expositions. See also Novotny and Sokołowski
(2012) for an overview of the rival notion of topological
derivative, and Amstutz (2005) for the calculation of
topological derivatives in the context of fluid mechanics.

In the framework of Hadamard’s method, the sensitivity
of a function of the domain is assessed with respect to small
perturbations of its boundary: variations of a given shape �

are considered in the form

�θ = (Id + θ)(�), (7)

where θ : R
d → R

d is a ‘small’ vector field, and Id is
the identity mapping from R

d into itself; see Fig. 2 for an
illustration.

Since admissible shapes � ∈ Oad are smooth and only
� is subject to optimization, it is natural that θ belong to the
set �ad of admissible perturbations defined by:

�ad =
{
θ : Rd → R

d smooth, θ = 0 on �in ∪ �out

}
;

so that variations (7) of admissible shapes stay admissible.

Definition 1 A function of the domain F(�) is shape
differentiable at � ∈ Oad if the underlying mapping θ �→
F(�θ), from �ad into R, is differentiable at θ = 0 (in the
sense of Fréchet). The corresponding derivative is denoted
by θ �→ F ′(�)(θ), and the following Taylor expansion
holds:

F(�θ) = F(�) + F ′(�)(θ) + o(θ) (8)

where o(θ) → 0 as θ → 0.

When it comes to shape derivatives, the first result of
interest deals with the volume and perimeter functionals; see
Allaire (2007), Henrot and Pierre (2005) for a proof.

Theorem 1 Let � be a smooth shape. Then,

Fig. 2 Example of a variation �θ of a shape �

2765

C. Dapogny et al.

(i) The volume Vol(�) is shape differentiable and its
derivative reads:

∀θ ∈ �ad, Vol′(�)(θ) =
∫

�

θ · n ds.

(ii) The perimeter Per(�) is shape differentiable and its
derivative reads:

∀θ ∈ �ad, Per′(�)(θ) =
∫

�

κ θ · n ds,

where κ : ∂� → R is the mean curvature of ∂�.

Calculating shape derivatives of functions of the form (4)
or (5) is a little harder, since they bring into play the solution
of a partial differential equation posed on � (in the present
case, the Navier-Stokes system (1)). This can however be
managed by using quite classical adjoint techniques from
optimal control theory. Again, we refer to Allaire (2007)
for a comprehensive introduction to such techniques in the
context of shape optimization, and to Appendix A for a
sketch of proof.

Theorem 2 Let � ∈ Oad ; then,

(i) The energy dissipation E(�) given by (4) is shape
differentiable and its derivative reads:

∀θ ∈ �ad, E′(�)(θ) =
∫

�

(−2νe(u) : e(u)

+2νe(u) : e(ve)) θ · n ds,

(9)

where (ve, qe) is an adjoint state, defined as the
solution of the linear PDE

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−ν	ve + (∇u)T ve − (∇ve)u + ∇qe

= −2ν	u in �,

div(ve) = 0 in �,

ve = 0 on � ∪ �in,

σ (ve, qe)n + (u · n)ve = 4νe(u)n on �out.

(10)

(ii) The least-square functional D(�) defined by (5) is
shape differentiable and its derivative reads:

∀θ ∈ �ad, D′(�)(θ) =
∫

�

2νe(u) : e(vd) θ · n ds,

(11)

where the adjoint system for (vd , qd) reads

⎧
⎪⎪⎨

⎪⎪⎩

−ν	vd + (∇u)T vd − (∇vd)u + ∇qd = 0 in �,

div(vd) = 0 in �,

vd = 0 on � ∪ �in,

σ (vd , qd)n + (u · n)vd = u − uref on �out.

(12)

Remark 3 1. As is customary in shape optimization—and
in optimal control in general -, the adjoint systems (10)
and (12) are linear, while the original Navier-Stokes
system (1) is non linear.

2. From the mathematical point of view, the adjoint
systems (10) and (12) are well-posed in suitable
functional spaces when the parameter ν is assumed to
be large enough (see e.g. Henrot and Privat 2010).

Like those of the functions Vol(�), Per(�), E(�) and
D(�) involved in Theorems 1 and 2, the shape derivative
of a fairly general class of shape functionals F(�) has the
generic form:

F ′(�)(θ) =
∫

�

φ θ · n ds =: (φ, θ · n)L2(�), (13)

where the scalar function φ : � → R is the ‘shape gradient’
of F with respect to the L2(�) inner product. This statement
is referred to as the Structure theorem for shape derivatives;
see Henrot and Pierre (2005), §5.9. In particular, F ′(�)(θ)

depends only on the values of the normal component θ · n
on the free boundary �; this reflects the intuitive fact that
tangential deformations of � leave the values of F(�)

unchanged at first order.
For further reference, the structure (13) makes it easy

to infer descent directions for F(�). Indeed, if θ coincides
with −φn on �, it readily follows from (8) that, for t > 0
small enough:

F(�tθ) = F(�) − t

∫

�

φ2 ds + o(t) < F(�). (14)

3 Numerical methods

In this section, we describe in more detail the numerical
methods involved in the resolution of the shape optimization
problem (3).

3.1 Description of the numerical setting and outline
of the algorithm

Each shape � is represented by means of a simplicial
mesh T , composed of K (closed) simplices T1, ..., TK

(i.e. triangles in 2d, tetrahedra in 3d), and I vertices
x1, ..., xI . The mesh T is computational in the sense of
Finite Elements, that is:

– The Tk form a cover of �, i.e. � = ⋃K
k=1 Tk ,

– The Tk do not overlap, i.e. the intersection between the
interiors of Tk and Tk′ is empty whenever k �= k′,

– The mesh T is conforming; for instance, in two
dimensions, the intersection between any two triangles

2766

Geometrical shape optimization in fluid mechanics using FreeFem++

Tk and Tk′ , k �= k′, is either empty, or it is a vertex, or
an edge of T .

See Fig. 3 for illustrations of these notions.
In the following, we shall often consider sequences of

shapes �n and meshes T n, and we denote with a n super-
script all the entities (vertices xn

i , simplices T n
k , numbers of

vertices In and simplices Kn) of T n.

So as to emphasize the needed numerical methods in the
resolution of (3), we now give a deliberately hazy sketch of
the main stages; a practical version is given in Section 3.7.

– Initialization: The initial domain �0 is equipped with
a mesh T 0.

– For n = 0, . . . until convergence:

Fig. 3 Examples of a a mesh with overlapping triangles (in gray); b a
mesh with non overlapping, yet non conforming triangles (in gray); c
a computational mesh

1. Compute the solution (u, p) of the Navier-Stokes
(1), and the adjoint state (v, q), solution of (10) or
(12) on �n, using the mesh T n.

2. Compute the shape derivatives of J (�) and G(�)

(see Theorems 1 and 2) and infer a descent
direction θn for the optimization problem (3).

3. Choose a sufficiently small time step τn and update
the shape �n into the new shape �n+1 := (Id +
τnθn)(�n); a mesh T n+1 of �n+1 is obtained.

This program raises a number of issues:

– The numerical resolution of the systems (1), (10) and
(12) is by no means trivial; Section 3.2 below is devoted
to this issue.

– The calculation of a descent direction for J (�) which
allows to satisfy the constraint G(�) demands the
use of an adapted optimization algorithm, which is
described in Section 3.3.

– The deformation of the mesh T n of �n into a
computational mesh T n+1 of �n+1 is a difficult
task. We describe in Section 3.4 the stakes of
mesh deformation, and in Section 3.5 a strategy for
calculating a nice shape gradient which eases this
purpose.

3.2 Numerical resolution of the Navier-Stokes
equations

The numerical resolution of the Navier-Stokes system (1)
with the Finite Element method is faced with two relatively
independent difficulties. The first one is related to the
treatment of the nonlinear convective term (u · ∇)u; the
second one is quite common in the resolution of saddle-
point problems: it is about the choice of adequate Finite
Element spaces for the discretization of the velocity u and
pressure p. Notice that the adjoint systems (10) and (12) are
linear, so their resolution is not concerned by the first issue,
but it is by the second one. We only discuss the case of the
nonlinear Navier-Stokes system (1) in this section, which is
in all regards more difficult.

3.2.1 Dealing with the nonlinear convective term using
Newton’s method

We rely on a fairly standard Newton method for nonlinear
problems. Writing (1) in the abstract form

A(u, p) = 0, (15)

Newton’s method achieves the solution as the limit of the
sequence (uk, pk), where each update (δuk, δpk) between

2767

C. Dapogny et al.

the steps k and (k + 1) is calculated as the solution to the
linearized version of (15) around (uk, pk):

d(uk,pk)A(δuk, δpk) = −A(uk, pk), (16)

where d(uk,pk)A is the linearization of the mapping
(u, p) �→ A(u, p) at (uk, pk). In the particular case of
interest for us, the iterative procedure (16) reads as follows:

1. Initialization: The pair (u0, p0) is the solution to the
Stokes counterpart of (1) (i.e. the version of (1) where
the non linear term is omitted):
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−ν	u0 + ∇p0 = 0 in �,

div(u0) = 0 in �,

u0 = uin on �in,

u0 = 0 on �,

σ(u0, p0)n = 0 on �out.

(17)

2. For k = 1, ..., (uk+1, pk+1) is obtained by

(uk+1, pk+1) = (uk, pk) + (δuk, δpk),

where (δuk, δpk) is the solution to the linear system
(viz. (16)),

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−ν	(δuk) + (uk · ∇)(δuk) + ((δuk) · ∇)uk

+∇(δpk) = ν	uk − (uk · ∇)uk − ∇pk in �,

div(δuk) = 0 in �,

δuk = 0 on � ∪ �in,

σ (δuk, δpk)n = 0 on �out,

(18)

which is sometimes referred to as the Oseen system.
3. Ending criterion: The algorithm ends when

ek < εstop, with

ek :=
√
√
√
√

‖δuk‖2
L2(�)d

+ ‖∇(δuk)‖2
L2(�)d×d

‖uk‖2
L2(�)d

+ ‖∇uk‖2
L2(�)d×d

(19)

for a fixed, user-defined tolerance εstop.

This ending criterion is inspired from (Girault and
Raviart 1986, Chapter 6), where the sequence (uk, pk) is
proved to converge quadratically to the solution of (1),
provided the initial pair (u0, p0) is ‘close’ enough to the

latter. In other terms, the error ek behaves as ek+1 ≈ (
ek

)2
.

In practice, only 3 or 4 iterations are required to fulfill (19)
with εstop = 10−10.

Let us mention that many other methods are available for
the numerical resolution of (1), such as the Oseen iteration
method, the Least-Square gradient method, the Peaceman-
Racheford method (an increment of the Least-Square
gradient method), with different assets and drawbacks
which we do not discuss here; see Girault and Raviart
(1986).

On a different note, Newton-like algorithms are well-
known to experience difficulties as far as convergence is

concerned, especially when the initial state is ‘far’ from the
sought solution; in our context of the numerical resolution
of the Navier-Stokes system (1), this is likely to happen
in the case of moderate-to-high Reynolds numbers, where
the solution (u0, p0) to the Stokes equation (17) is ‘too
far’ from that (u, p) to (1). In such a case, one may resort
to mixed strategies (e.g. starting with the Oseen iteration
method for some iterations, then branching with the Newton
method), or continuation methods (which advocate to
increase steadily the Reynolds number) to improve and
make the convergence process more robust. As we have
already mentioned, the model examples considered in this
article (see Section 5) arise in the regime of low Reynolds
number, and we did not run into the need for such elaborated
strategies.

Remark 4 In practice, we do not solve exactly (17), but the
slightly modified version

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−ν	u0 + ∇p0 = 0 in �,

div(u0) + εp0 = 0 in �,

u0 = uin on �in,

u0 = 0 on �,

σ(u0, p0)n = 0 on �out.

(20)

where ε is a very small parameter (typically ε = 10−6).
The reason is that only the gradient of p0 is involved in
the system (17), which is not well-posed as a result: p0 is
only defined up to a constant; see Remark 17. In contrast,
(20) is well-posed; the matrix associated to its resolution by
the Finite Element method is positive definite, which allows
to use efficient numerical linear algebra solvers; see e.g.
(Girault and Raviart 1986, Chapter 4) about this approach.
The same trick applies to (18).

3.2.2 Choice of the Finite Element discretization

When it comes to the numerical resolution of linear saddle
point problems of the form (17) or (18), one should pay
attention to the choice of the Finite Element spaces used for
the discretization of the unknown velocity u and pressure p.
In our case, (17) and (18) are solved with the Finite Element
method in mixed velocity-pressure formulation, using P2

Lagrange elements for the velocity u and P1 Lagrange
elements for the pressure p. This choice as regards Finite
Element spaces is one among those ensuring that the so-
called Brezzi inequality holds, and thereby that the discrete
linear systems corresponding to (17) and (18) are invertible.
Details about numerical methods for the resolution of saddle
point problems can be found in Donea and Huerta (2003) or
Ern and Guermond (2013).

2768

Geometrical shape optimization in fluid mechanics using FreeFem++

3.3 The augmented Lagrangian algorithm
for equality-constrained problems

In order to drive the numerical resolution of (3), we rely on
the augmented Lagrangian method, a basic sketch of which
is provided; we refer to Nocedal and Wright (2006) §17.4
for detailed explanations.

The augmented Lagrangian algorithm transforms the con-
strained optimization problem (3) into the series of uncon-
strained problems (hereafter indexed by the superscript n):

inf
�∈Oad

L (�, �n, bn), (21)

where

L (�, �, b) = J (�) − �G(�) + b

2
G(�)2 (22)

In the definition of the augmented Lagrangian L , the
parameter b is a (positive) penalty factor for the violation
of the constraint G(�) = 0, and � is an estimate of the
Lagrange multiplier associated with this constraint in (3).

The augmented Lagrangian algorithm intertwines the
search for the minimizer �n of � �→ L (�, �n, bn)

for fixed values of �n and bn, and the update of these
coefficients according to the rule:

�n+1 = �n−bnG(�n), and bn+1 =
{

αbn if b < btarget,
bn otherwise; (23)

in other terms, starting from a ‘small’ value b0, the penalty
b is increased by a user-defined factor α > 1 during the first
iterations of the optimization process, until the maximum,

‘large’ value btarget is reached: this smooth increase of b

urges the optimized domain to fulfill the constraint in an
increasingly stringent way in the course of the optimization
process; see Section 5 for the actual values used in our
implementation.

We again refer to Nocedal and Wright (2006) for an
insight about this procedure; let us simply mention that �n

is an increasingly accurate approximation of the Lagrange
multiplier for the constraint G(�) = 0 featured in (3).
Notice also that the penalty coefficient bn is multiplied by a
user-defined constant α > 1 during the first iterations of the
algorithm, and that it is kept fixed afterwards. In particular,
the augmented Lagrangian strategy does not require bn to
tend to infinity so to enforce the constraint G(�) = 0; this
guarantees a better conditioning of (21) with respect to the
naive quadratic penalty method (featuring only the first and
last terms in the definition of L in (21)).

In our context, where the computational burden of
minimizing � �→ L (�, �, b) is significant, we rely on
the following practical implementation of these ideas which
limits the number of iterations of the optimization method.

– Initialization: Start from an initial shape �0 and
coefficients �0 and b0.

– For n = 0, ... until convergence

– choose a descent direction θn for � �→
L (�, �n, bn),

– take τn small enough so that L ((Id +
τnθn)(�n), �n, bn) < L (�n, �n, bn), and set
�n+1 = (Id + τnθn)(�n).

Fig. 4 Examples of a a mesh
getting very stretched (gray
elements); b a mesh developing
overlaps (red elements) in the
course of its deformation

2769

C. Dapogny et al.

– update the coefficients �n and bn of the
augmented Lagrangian L according to (23).

3.4 Mesh-related issues

Assume for one moment that a descent direction θn for (3)
and a descent step τn have been found at the nth iteration
of the procedure described in Section 3.1; we are faced with
the realization of the operation �n �→ �n+1 = (Id +
τnθn)(�n). If T n is the mesh of �n, the natural way to carry
it out reads:

xn
i �→ xn+1

i := xn
i + τnθn(xn

i), i = 1, ..., I n, (24)

while the connectivities of the mesh are unchanged, i.e.
the considered mesh T n+1 of �n+1 is made of the same
simplices as T n, but their vertices are relocated according
to θn.

Unfortunately, this simple procedure is likely to give rise
to very stretched (i.e. almost flat) elements within a few
iterations. This is problematic since the accuracy of the
resolution of PDE with the Finite Element method greatly
depends on the quality of the elements in the mesh, i.e. on
their being close to equilateral (Ciarlet 2002). It may also
happen that the mesh becomes overlapping in the course
of the deformation; see Fig. 4 for an illustration of such
configurations.

Hence, the numerical resolution of (1) may become very
inaccurate (not to say impossible) as the computational
mesh is successively deformed, causing the whole opti-
mization process to stop prematurely. To circumvent this
drawback, we rely on two ingredients:

– The emergence of stretched elements in T n may be
postponed: in the transformation of �n into �n+1

(practically, that of T n into T n+1 via (24)), only the
values of θn on the boundary �n determine the new
domain �n+1; in the numerical framework, the values
of θn inside �n are only used to relocate the internal
vertices of T n. In particular, these internal values of θn

may be chosen freely, in a way that makes T n+1 of good
quality insofar as possible, as we describe in the next
Section 3.5.

– When the quality of the mesh becomes poor, i.e. in
our context when the volume of one of its elements
becomes very small, i.e.

min
k=1,...,Kn

|T n
k | < εmesh,

where εmesh is a user-defined parameter (see Frey and
George 2008 Chap. 18 for more details, in particular
about other possible quality measures of a mesh,

which could be easily implemented in FreeFem++.), a
remeshing of T n is carried out: in a nutshell,

– ‘Too long’ edges are split,
– The endpoints of ‘too short’ edges are merged,
– The connectivities of ill-shaped triangles (e.g.

nearly flat triangles) are swapped,
– Vertices are moved,

as long as the overall quality of the mesh is improved.
See Fig. 5 for an illustration of these operations.

Fig. 5 Illustrations of the remeshing operations described in
Section 3.4: a splitting of a ‘long’ edge; b collapse of the two end-
points of a ‘short’ edge; c swap of the connectivities of a configuration
of two ill-shapes triangles; d relocation of one vertex

2770

Geometrical shape optimization in fluid mechanics using FreeFem++

From the practical implementation viewpoint, this
complex series of operations is conveniently carried out
owing to the movemesh command in FreeFem++.

3.5 Extension-regularization of the shape gradient

As we have seen, our optimization procedure amounts to
a series of minimizations of functionals of the form (21),
which we generically denote by F(�) in the present section.
We have seen in Section 2.3 that a natural candidate for a
descent direction is

θ = −φ n, (25)

where the scalar function φ : � → R is the L2(�)-
shape gradient of F(�), which is identified from the shape
derivative of this functional via (13).

Unfortunately, this choice is generally ill-suited for at
least two reasons:

(i) Strictly speaking, (25) only makes sense on the
boundary � of the actual shape �, while the numerical
setting requires the velocity field θ to be defined on �

as a whole, see (24).
(ii) The L2(�) shape gradient φ of F(�) may be

very irregular, especially in the areas surrounding
�out because of the change in boundary conditions
occurring there. This may cause numerical artifacts
when it comes to the mesh procedure (24); see for
instance (Mohammadi and Pironneau 2010) §6.2.4. It
is therefore often desirable to smooth the velocity field
θ on � before performing (24).

The popular extension-regularization procedure provides
alternative ways to calculate a descent direction θ for
F(�) from the knowledge of the shape derivative F ′(�)(θ)

while overcoming both difficulties; see e.g. Burger (2003),
De Gournay (2006), Dogan et al. (2007). The basic idea
consists in identifying a shape gradient for F(�) from its
shape derivative F ′(�)(θ) (see (13)) by means of a different
inner product (·, ·)V than (·, ·)L2(�), acting on a (Hilbert)
space V of more regular vector fields, defined on � as a
whole. More precisely, one searches for θ ∈ V such that for
all test functions ψ ∈ V ,

(θ , ψ)V = F ′(�)(ψ) (26)

Doing so ensures that:

F ′(�)(−θ) = −(θ , θ)V < 0,

which together with (14) guarantees that θ is also a descent
direction for F(�).

To be quite precise, in our context, we rely on the space

V = {v ∈ H 1(�)d, v|�in∪�out = 0, ∇�v ∈ L2(�)d},
where ∇�f := ∇f − (∇f ·n)n is the tangential gradient of
a (smooth) function f ; V is equipped with the inner product
(·, ·)V defined by

∀θ , ψ ∈ V, (θ , ψ)V = γ

∫

�

Ae(θ) : e(ψ) dx

+(1 − γ)

∫

�

∇�θ · ∇�ψ ds. (27)

Definition (27) features two contributions, balanced by the
parameter γ ∈ (0, 1]:
– The first term in (27) is inspired by the linearized

elasticity equations. Here, A is Hooke’s law, acting on
symmetric matrices e with size d × d,

Ae = 2μe + λtr(e),

where λ and μ are the Lamé coefficients of the fictitious
elastic material. This choice—which is widespread in
meshing (Baker 2002; Dobrzynski and Frey 2008) to
help in keeping a mesh with fine quality—is motivated
by the intuition that elastic displacements tend to induce
little compression (i.e. local change in the volume).

– The second term in (27) corresponds to the Laplace-
Beltrami operator on �. Its role is to enforce the
smoothness of the descent direction θ on �; see for
instance Dogan et al. 2007.

With these definitions at hand, the desired ‘regularized’
shape gradient θ is calculated by solving (26) with a
standard Finite Element method on a mesh of �.

Remark 5 In our implementation, the Lamé parameters λ,μ

of the elastic material used for the extension-regularization
procedure are homogeneous over �. Notice that the
above strategy could be easily improved by considering
inhomogeneous elasticity coefficients λ, μ, for instance
coefficients characterized by a larger Young’s modulus
(which measures the resistance to traction and compression
efforts) in regions where the mesh of � has stretched
elements, so to penalize the relative compression rate they
undergo.

Remark 6 A perhaps more natural idea consists in choosing

V =
{
v ∈ H 1(�)d, v|�in∪�out = 0

}
,

with associated inner product:

(θ , ψ)V = γ

∫

�

∇θ : ∇ψ dx +
∫

�

θ · ψ dx,

2771

C. Dapogny et al.

where γ > 0 is a ‘small’ parameter. In this context, (26)
amounts to solving the regularizing, elliptic system:

⎧
⎨

⎩

−γ	θ + θ = 0 in �,

θ = 0 on �in ∪ �out,

γ ∂θ
∂n = −φn on �.

(28)

However easy to implement, this choice is less efficient
than (27) insofar as it does not show the same efficiency
in preventing the emergence of stretched elements; see the
example in Section 5.3 about this point.

3.6 Calculation of the curvature

Most of the numerical methods involved in the resolution of
the shape optimization problem (3) imply the calculations
of the normal vector n and the curvature κ of the boundary
∂� of a shape � (see for instance Theorem 1). In practice,
these quantities are evaluated from the discrete geometry of
a mesh T of �, which is not a completely straightforward
task. In this section, following (Frey and George 2008),
we describe a simple, yet robust method to achieve this
goal in the case of two space dimensions: d = 2. Similar
approximations hold in the general case, which involve
more tedious notations.

Let xi be a vertex of T lying on ∂�, and let xi−1 (resp.
xi+1) be the vertex on ∂� located immediately before (resp.
after) xi when ∂� is oriented counterclockwise; see Fig. 6.

In this situation, the tangent vector t(xi) to ∂� at xi is
calculated as:

t(xi) =
−−−−−→xi+1xi−1

|−−−−−→xi+1xi−1|
,

Fig. 6 Calculation of the tangent and normal vectors to ∂� from the
data of a triangular mesh

and the unit normal vector n(xi) to ∂� at xi , pointing
outward � is estimated as the rotate of t(xi):

n(xi) =
(−t2(xi)

t1(xi)

)

.

Thence, the curvature radius r(xi) at xi is approximated
as:

r(xi) = 1

4

(−−−→xixi−1 · −−−→xixi−1

−n(xi) · −−−→xixi−1
+

−−−→xixi+1 · −−−→xixi+1

−n(xi) · −−−→xixi+1

)

, (29)

and the curvature κ(xi) at xi is simply κ(xi) = 1
r(xi)

if none
of the denominators featured in (29) equals 0 (it is set to 0
otherwise).

3.7 Algorithmic description of the implemented
method

We are now ready to provide a precise sketch of the shape
optimization algorithm arising from the previous consider-
ations. The brief account below follows exactly the steps of
the file main.edp of the (commented) supplied code.

2772

Geometrical shape optimization in fluid mechanics using FreeFem++

4 Practical implementation of the shape
optimization algorithm

In this section, we describe the practical code used in the
numerical experiments of Section 5. In addition to the
detailed comments accompanying the sources, we focus our
discussion on the parts that should be modified for the user
to implement a different geometric or physical situation (i.e.
to change the initial shape, the objective function, the shape
derivative, etc.).

The user is supposed to have installed the free software
FreeFem++. This environment allows to solve partial
differential equations by the Finite Element method from
the input of their variational formulation via an adapted
pseudo-language. We recommend using the latest release,
although our programs work with any version above 3.42.
FreeFem++ is available at

http://www.freefem.org/ff++/,

and it comes along with a comprehensive documentation
(Hecht et al. 2005).

4.1 Organization of the repository and of the
program

Our code may be downloaded from the address:

https://github.com/flomnes/optiflow.

The main repository is organized as follows:

– The folder ./meshes contains the mesh files associ-
ated to the initial shapes of the test cases of Section 5:
mesh1.mesh, mesh2.mesh, etc.

– The FreeFem++ source code used to generate these
meshes is in the file geometry.edp.

– As the name suggests, the file main.edp contains the
main routines of the optimization process.

– The file macros.edp contains several useful macros;
see Section 4.3.

– The file curvature.edp gathers the routines
involved in the calculation of the mean curvature κ of
shapes; see Section 4.5.

– The files run case.sh and run all.sh are
shell scripts containing the sample command lines
needed to launch any, or all of the proposed test cases
in Section 5.

4.2 Main parameters

The main program, written in the file main.edp, is
executed by using the command line

FreeFem++ --param1 value1 ... main.edp,

where --param1, ... are the computational parameters of
the considered test case; see Table 1.

Seven geometric settings (associated to different meshes
of the initial shape and applied boundary conditions) are
implemented in our code, corresponding to values of the
config parameter ranging from 1 to 7. The precise
command lines used to launch these examples are supplied
in the file run case.sh. The first five configurations
correspond to the numerical results of Section 5.

4.3 Mainmacros

Our program relies on macros insofar as possible: it is
a convenient way in FreeFem++ to ensure that the
various operations carried out resemble their mathematical
counterparts. The shortcuts that are consistently used
throughout the implementation are stored in the file
macros.edp; see Listing 1 for a sample.

Table 1 Main parameters passed on the command line

--config Number of the considered test-cases; config ranges from 1 to 7

--navsto The Stokes (resp. Navier-Stokes) system models the flow if navsto is 0 (resp. 1)

--tau Value of τ , initial step in the gradient descent, see (24)

--errc Value of the stopping criterion εstop

--gamma Value of the regularization parameter γ ; see (27)

--beta The constraint function G(�) is Vol(�) if beta is 1, and Per(�) if beta is 0.

--delta The objective J (�) is the dissipated energy (4) if delta is 1, and the least-square discrepancy (5) if delta is 0.

--binit Initial value for the penalty parameter b in (22)

--btarget Limiting value for b

--cv Desired constraint (volume or perimeter) over initial value for the constraint G(�)

--optraff 0 for no remeshing, 1 for remeshing when necessary

--raffinit Value of the raff parameter used in the routines for mesh adaptation (see Section 4.8)

2773

http://www.freefem.org/ff++/
https://github.com/flomnes/optiflow

C. Dapogny et al.

Listing 1 Several macros (from macros.edp)

4.4 Definition of the geometry and of the Finite
Element setting

The meshes associated to the proposed test cases are sup-
plied in the folder ./meshes. The mesh Th corresponding
to the considered situation (i.e. associated to the actual value
of the config parameter) is read at the beginning of the
main.edp file; see Listing 2.

Listing 2 Reading the initial shape (from main.edp)

The Finite Element spaces on the mesh Th are then defined
as in Listing 3.

Listing 3 Definition of the Finite Element spaces and functions (from
main.edp)

These meshes may be generated using the code in the
file geometry.edp, which can easily be modified and
adapted to describe a different physical setting.

For instance, the code in Listing 4 allows to create the
mesh of the initial shape in the bend test case of Section 5.1;
see Fig. 9 (top).

4.5 Practical calculation of themean curvature

The routines dedicated to the calculation of the mean
curvature kappa of the boundary of the optimized shape

Listing 4 Creation of the initial mesh in the bend example of
Section 5.1 (from geometry.edp)

are a little involved. They are gathered in the file
curvature.edp and in principle, they do not need to be
modified.

The calculation of kappa in main.edp is then carried
out along the lines of Listing 5.

Listing 5 Calculation of the mean curvature in main.edp

4.6 Resolution of the flow equations

As outlined in Section 3.2, the Navier-Stokes equations are
solved iteratively thanks to the Newton method.

To achieve this, the Stokes equation is first defined as a
variational problem; see Listing 6 and Remark 4:

Listing 6 Variational problem for the Stokes system (from
main.edp)

The Navier-Stokes system is solved for the velocity and
pressure [ux,uy,p] by using the macro ns reprinted in
Listing 7. In a nutshell, the Stokes system is solved as

2774

Geometrical shape optimization in fluid mechanics using FreeFem++

Listing 7 Resolution of the flow equations (from main.edp)

an initial guess; then, if the parameter navsto is set to
1, a loop is performed during which the Oseen equation
is solved for the increment [dux,duy,dp], from which
[ux,uy,p] is updated.

4.7 Calculation of the objective function
and of the shape derivative

The considered objective function J (�) in (3) is the energy
dissipation (4) if the parameter delta is set to 1, and a
least-square difference (5) between the fluid velocity and a
target velocity if delta is 0. These are calculated from the
macro in Listing 8.

Listing 8 Macro for the objective function (from macros.edp)

Likewise, the constraint function G(�) is Vol(�) if
beta is 1, and Per(�) if beta is 0; these are calculated
from the macro in Listing 9.

Listing 9 Macro for the constraint function (from macros.edp)

Thence, the value of the augmented Lagrangian func-
tional is calculated by means of the macro EL, reprinted in
Listing 10.

Listing 10 Macro for the augmented Lagrangian (from
macros.edp)

At each iteration of the optimization loop (see Section 4.8
below), the adjoint states [vx,vy,q] are calculated as
the solution to (10) if delta is 1 or (12) if delta
is 0. This is achieved by calling the macro adjoint
reprinted in Listing 11. Notice the presence of the navsto
variable in the variational problem for the adjoint states,
corresponding to the term induced by the non linearity of
the flow equation (1) if navsto equals 1.

The shape derivatives of the considered objective and
constraint functions J (�) and G(�), and that of the
augmented Lagrangian L(�, �, b) are then computed,
again, thanks to a set of macros defined in the file
macros.edp; see Listing 12.

2775

C. Dapogny et al.

Listing 11 Macro for the resolution of the adjoint system (from
main.edp)

Listing 12 Macros for shape derivatives (from macros.edp)

The shape gradient of the augmented Lagrangian on � is
then extended to the whole computational mesh using the
regulbord macro; the result of which is stored in the
variable [dpx, dpy]; see Listing 13.

Listing 13 Macro for the extension-regularization procedure of the
shape gradient (from main.edp)

4.8 Main optimization loop : gradient descent
with line search

Last but not least, we now discuss our implementation of
the algorithm of Section 3.7 for the resolution of the shape
optimization problem (3), properly speaking.

This is achieved by means of two nested loops; see
Listings 14 and 15. The main, outermost loop, reprinted in
Listing 14, drives the update of the shape. At the beginning
of each iteration, the actual shape is stored in the mesh
Th2; then the direct and adjoint problems are solved thanks
to the macros ns and adjoint respectively (see Line 4);

Listing 14 Main loop of the optimization algorithm (from
main.edp)

2776

Geometrical shape optimization in fluid mechanics using FreeFem++

Listing 15 Line search in the optimization algorithm (from
main.edp)

a descent direction [dpx,dpy] from the actual shape
Th2 is inferred by using the macro regulbord (Line
8). Meanwhile, the performance L0—i.e. the value of the
augmented Lagrangian—of Th2 is calculated (Line 9).

Then, starting from the input parameter tau an
appropriate value of the time step tau1 is found by the
inner loop of Listing 15, which is described below.

This inner loop results in a mesh Th of the new shape;
the coefficients �n and bn of the augmented Lagrangian are
eventually updated (Line 29). This main loop stops if either
the maximum number of iterations jjmax is reached or if
the ending criterion

sv ≤ errc

is fulfilled; see Line 23 in Listing 14 and Section 3.7.
Let us now describe the inner loop, which is nothing

but a basic line search procedure for finding a suitable
value of the time step tau1; see Listing 15. This procedure
is initialized while tau1=tau, tau being a user-defined
value. At each iteration of the inner loop, the current shape
Th2 is deformed along the descent direction [dpx,dpy]
for a time tau1; this yields a new, ‘attempt’ mesh Th (Lines
6–30).

This shape Th is then evaluated: the flow equations
are solved on Th (see Line 37), and the value L1 of the
augmented Lagrangian associated to Th is calculated (Line
40). If L1 is smaller than the value L0 of the augmented
Lagrangian of the current shape Th2, the loop ends, and
the ‘attempt’ mesh Th is accepted as the updated shape.
Otherwise, the procedure is repeated from the beginning
once the value of tau1 has been divided by 2.

Note that, if after kkmax=10 iterations of the line
search procedure, none of the produced ‘attempt’ meshes
Th has produced a value L1 of the augmented Lagrangian
smaller than L0, the last iteration kk = kkmax is accepted
nevertheless; the step used in this case being τ/210, Th is
then very close to Th2.

One final word about remeshing is in order. If the
optraff input parameter equals 1, then whenever the
mesh of the shape is deformed, the minimum area of
an element in the tentative mesh Th is compared to the
parameter minarea0 (see Lines 6–30 in Listing 15). If
smaller, the mesh is adapted thanks to the adaptmesh
command of FreeFem++ (Line 14 in Listing 15). The
resulting mesh has edges with length comprised betwen
raff and raff/sqrt(2), where raff stems from the
raffinit parameter from the command line.

Note that, if mesh adaptation occurs, the connectivity
of the boundary has to be calculated anew by calling
calculconnect (viz. line 33), so that the routines
described in Section 4.5 may be used to calculate the
curvature of the shape (Table 2).

2777

C. Dapogny et al.

Table 2 CPU time for the numerical examples of Section 5

Case number Duration

1 3 m 24 s

2 10 m 8 s

3 4 m 28 s

4 12 m 7 s

5 6 m 43 s

Fig. 7 Settings of the five test cases discussed in Section 5; a the bend,
discussed in Section 5.1, b the ramified structure of Sections 5.2 and
5.3, c the straight pipe with one inlet, one outlet where a least-square
criterion is considered, as studied in Section 5.4, d the dissipated
energy minimization example of Section 5.5

5 Numerical illustrations

In this section, we present five two-dimensional applications
of the numerical algorithm presented in Section 3.7. The
geometric configurations associated to these examples are
represented in Fig. 7, and the parameters used in the
different test cases (initial parameters of the augmented
Lagrangian algorithm, target volume, etc.) are reported in
Table 3. The approximate CPU time when running each
example on a workstation with an Intel Core i5-7600T @
2.80 GHz CPU is indicated in Table 2.

5.1 Minimization of the dissipated energy in a bend

Our first benchmark example is concerned with the
optimization of the shape of a pipe with orthogonal inlet and
outlet, as depicted in Fig. 7a; see for instance (Çlabuk and
Modi 1992; Borrvall and Petersson 2003). In a nutshell, this
test case answers the question:

How to build a pipe with fixed volume that spends the least
amount of energy to convey a fluid from �in to �out?

The inlet flow is given by the parabolic profile (Fig. 8)

uin(x1, x2) =
(

(1 − x2)

(
2

3
− x2

)

, 0

)

.

Starting from the initial shape �0 represented in Fig. 9 (top),
we minimize the work of viscous forces, i.e. J (�) = E(�),
as defined by (4), under the volume constraint Vol(�) = VT ,
where VT = Vol(�0), i.e. the target volume is that of �0.

The results are displayed on Fig. 9, and the associated
convergence histories are included in Fig. 8. The dissipated

Table 3 Parameters used for the numerical examples of Section 5

VT

V0

PT

P0
γ τ 0 εstop

Case 1 1 10−2 10−2 10−2

Case 2 1 10−2 10−2 5 × 10−3

Case 3 10−2 10−2

Case 4 1 1 3 × 10−3 2 × 10−2

Case 5 0.97 10−2 10−2 10−2

�0 b0 btarget Re

Case 1 0 1 101 200

Case 2 0 10−1 101 200

Case 3 0 0 0 200

Case 4 15 101 102 200

Case 5 0 102 102 200

From left to right: desired volume over initial volume, desired
perimeter over initial perimeter, regularization parameter, initial
gradient step, stopping criterion, initial Lagrange multiplier, initial
value of b, target value of b

2778

Geometrical shape optimization in fluid mechanics using FreeFem++

Fig. 8 Convergence histories of
(from left to right, top to bottom)
J (�), Vol(�), L (�, �, b) and
�n in the bend optimization
example of Section 5.1

viscous energy decreases by roughly 25% during the
process, and as expected, the optimized design looks like
a straight pipe. It is worth mentioning that theoretical
arguments in Henrot and Privat (2010) support this
observation for a very close model.

Eventually, let us mention that this test case is fairly
insensitive to the computation parameters �0 and τ , which
makes it the easiest of all five to run.

5.2 Minimization of the dissipated energy
in a ramified structure with volume constraint

Our second example is a simple model for the ramified
structure of a human lung. It can be considered as an
extension of the study in de La Sablonière et al. (2011).

The situation is that of Fig. 7b, where incoming parabolic
profiles are imposed on each component of �in. More
precisely, �in is the reunion of four disjoint line segments;
for any of these segments, let us denote by (xA

1 , xA
2) and

(xB
1 , xB

2) the two ending points, which are assumed to be
distributed counterclockwise on �in. The imposed inlet flow
on the considered segment is then defined by:

uin(x1, x2) = s(1 − s)

(−(xB
2 − xA

2)

xB
1 − xA

1

)

where s = xA
1 −x1

xA
1 −xB

1
= xA

2 −x2

xA
2 −xB

2
so that in particular uin is

oriented toward inside �: uin · n ≤ 0 on �in.
In this context, we again aim at optimizing the energy dissi-

pated owing to viscous effects, i.e. J (�) = E(�), under the
volume constraint Vol(�) = VT , where VT = Vol(�0).

The results are presented in Fig. 10, and the associated
convergence histories are those in Fig. 11. Interestingly
enough, ramifications appear in the course of the iterations
and the optimized shape is much smoother than the initial
one. These results are also in accordance with those
obtained in de La Sablonière et al. (2011).

This example shows large mesh deformations, which
justifies the importance of using a good extension-reg-
ularization procedure, such as that introduced in Section 2.3.

5.3 Minimization of the dissipated energy
in a ramified structure with perimeter constraint

This third example arises in the exact same physical context
as that of Section 5.2 (again, see Fig. 11. The only difference
with the latter is that we now impose a constraint on
the perimeter of shapes: Per(�) = PT , with PT =
0.97 Per(�0). The convergence histories of the computation
are reported on Fig. 12, and the shape at several intermediate
stages is represented on Fig. 13.

2779

C. Dapogny et al.

Fig. 9 Intermediate shapes �n obtained in the bend optimization
example of Section 5.1 at iterations (from top to bottom) n = 0, 5, 100
and 500

Let us emphasize the role of the regularizing parameter
γ featured in the definition of the extension-regularization
inner product (27). In this example (as in the previous ones),
the L2(�) shape gradient of E(�) is not smooth in the
vicinity of the transitions between parts of the boundary
bearing different types of boundary conditions (that is,
the transitions between �in, �out or �). Therefore, if no
regularization of this gradient is applied (γ = 1 in (27)),
mesh intersections appear within a few iterations in this
region.This phenomenon is illustrated in Fig. 14 below:
all parameters retain the same values except for γ , which
is changed to 1. The mesh irregularities are caused by an
irregular shape gradient, and are not observed for 0 < γ < 1.

Fig. 10 From top to bottom, successive shapes �n at iterations n =
0, 5, 240, 1000 in the dissipated energy minimization example in a
ramified structure with volume constraint of Section 5.2

5.4Minimization of the discrepancy with a reference
velocity profile

Our third example considers pipes � in the situation
depicted on Fig. 7c, where the parabolic profile

uin(x1, x2) = (x2(1 − x2), 0) (30)

is imposed on the inlet �in. Our aim is to optimize the shape
of � with respect to the least-square criterion J (�) = D(�)

given by:

D(�) =
∫

�out

|u − uref|2 ds, (31)

2780

Geometrical shape optimization in fluid mechanics using FreeFem++

Fig. 11 Convergence histories
of (from left to right, top to
bottom) J (�), Vol(�),
L (�, �, b) and �n in the
dissipated energy minimization
example in a ramified structure
of Section 5.2

Fig. 12 Convergence histories
of (from left to right, top to
bottom) J (�), Per(�),
L (�, �, b) and �n in dissipated
energy minimization in a
ramified structure example of
Section 5.3

2781

C. Dapogny et al.

where the reference profile uref is the velocity of the fluid,
solution to (1), associated to the same incoming flow (30),
on the reference domain �ref defined by:

�ref :=
{

(x1, x2) ∈ R
2, 0 ≤ x1 ≤ 3

2
,

: fref(x1) ≤ x2 ≤ fref(x1) + 1} ,

with

fref(x1) = 1

5
x1

(
3

2
− x1

)

.

In other terms, in this test-case, the resolution of the
optimization problem (3) aims to recover the shape of the

Fig. 13 From top to bottom, successive shapes �n at iterations n =
0, 100, 250, 500 in the energy dissipation example in a ramified
structure with perimeter constraint of Section 5.3

reference domain �ref from the sole knowledge of the
velocity profile uref on �out. By construction, (3) has at least
one solution � = �ref, since D(�ref) = 0 ≤ D(�) for
all � ∈ Oad ; however, this solution may not be unique.
Note also that, obviously, other choices are possible as far
as the reference profile uref is concerned, but depending
on whether this choice is ‘physical’ or not, it may not
be possible to realize the latter. The above choice of uref

ensures that D(�) should be “small” upon convergence of
the numerical resolution of (3).

Fig. 14 Examples of mesh deteriorations. Zooms on the upper left
corner of the intermediate shapes �n obtained in the ramified
structure example of Section 5.3, by removing regularization (which
corresponds to choosing the parameter γ = 1 in (27)). From top to
bottom, iterations n = 15, 60 and 130. This figure shows the necessity
to choose γ �= 1 to avoid mesh deteriorations caused by irregular
displacement fields

2782

Geometrical shape optimization in fluid mechanics using FreeFem++

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100

J/J0

Fig. 15 Convergence history of J (�) in the least-square criterion
minimization example of Section 5.4

The considered shape optimization problem in this case
is unconstrained—i.e. no occurrence of the constraint G(�)

appears in (3); from the numerical viewpoint, the framework
of Section 3.7 reduces to a simple gradient algorithm: b =
�0 = 0 (Fig. 15 and 16).

Several intermediate shapes in the resolution of (3) and
the reference shape �ref are presented on Fig. 17, and the
corresponding one-dimensional profiles of the components
u1 and u2 of the velocity u of the fluid on �out are

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Initial profile
Iteration 6

Iteration 100
Reference profile

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Initial profile
Iteration 6

Iteration 100
Reference profile

Fig. 16 One-dimensional profiles of (top) u1 and (bottom) u2 on �out
at several stages in the example of Section 5.4

reported on Fig. 16. These profiles get closer and closer
to their reference counterparts as the algorithm reaches
convergence, and the value of the minimized least-square
criterion D(�) decreases to roughly 0.1% of its initial value,

Fig. 17 From top to bottom, successive shapes �n at iterations n =
0, 6, 100 and reference shape in the least-square criterion minimization
example of Section 5.4

2783

C. Dapogny et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Reference shape
Final shape

Fig. 18 Boundary of the reference shape and shape at convergence in
the least-square criterion minimization example of Section 5.4

see the convergence history in Fig. 15. A close inspection
of Fig. 18 reveals that the optimized shape � does not
match with the reference �ref. This example as well as other,
unreported tests carried out using different reference shapes
�ref show that the latter is matched properly by the result
� from the optimization process in the region close to the
boundary �out, but that both shapes differ significantly far
from this region. This can be explained by the fact that at
low Reynolds number, the upstream flow has little influence

on the downstream flow; see Burkardt et al. (2002) for a
related observation.

Assuming that there exist more than one shape �

satisfying D(�) = 0, an interesting problem would be
to find one satisfying this property while minimizing the
dissipated energy E(�) given by (4), namely:

min
�

∈ OadE(�) s.t. D(�) = 0.

The interested reader may investigate this problem for
instance with the help of the tools and program presented in
this article.

5.5 Energy dissipation around an obstacle

In our last example, depicted on Fig. 7d, a solid obstacle is
immersed in a cavity filled with a fluid, and the shapes �

stand for the fluid domain, which is the complement of the
obstacle in the cavity. Our aim is to minimize the dissipated
energy in the cavity with respect to the shape of the obstacle,
i.e. J (�) = E(�) with the volume constraint Vol(�) = VT ,
VT = Vol(�0).

A very similar version of this problem is considered
in Pironneau (1973) and Bourot (1974) in the context of
Stokes flows. The same problem was later investigated

Fig. 19 Convergence histories
of (from left to right, top to
bottom) J (�), Vol(�),
L (�, �, b) and �n in the
dissipated energy minimization
example of Section 5.5

2784

Geometrical shape optimization in fluid mechanics using FreeFem++

using more modern topology optimization techniques in
Borrvall and Petersson (2003).

In the model situation discussed here, we impose a
horizontal flow on �in, namely

u = uin(x1, x2) = (1, 0) on �in,

Fig. 20 From top to bottom, successive shapes �n at iterations
n = 5, 100, 650 in the dissipated energy minimization example of
Section 5.5

and no-slip boundary conditions are prescribed on the
boundary of the obstacle. The convergence histories
are presented on Fig. 19. The resulting shape (see
Fig. 20, bottom) is roughly similar to those obtained in
references Bourot (1974), Borrvall and Petersson (2003),
having the visual aspect of a sharp rugby ball.

Finally, let us mention that, from the numerical point of
view, this test-case is the hardest to run, since �0 and τ have
to be chosen carefully in order to avoid the collapse of the
obstacle, which would result in an invalid mesh. From a
practical point of view, this choice relies on a few trials on
very coarse meshes.

6 Conclusion and perspectives

In this article, we have presented a numerical framework
for shape optimization in the context of fluid mechanics,
consisting of well-established techniques which we have
strived to present in an elementary and pedagogical way.
The resulting strategy has been successfully applied to
several benchmark test cases in the literature; admittedly,
the techniques involved suffer from limitations, and there is
a lot of room for improvements, notably:

– As we have explained in Section 3.4, the deformation of
the computational mesh according to the shape gradient
throughout the iterations of the optimization process is a
delicate operation. Even though the heuristics described
in Section 3.5 allow to overcome this difficulty in
many cases, it may still happen that at some point the
computational mesh becomes invalid; this is especially
likely to happen when the evolving shape changes
topology (for instance, two holes merge). This stake
is a burning issue in the literature, and it calls for
other means to represent shapes numerically than by
a computational mesh, e.g. via the level set method
(Pingen et al. 2010; Challis and Guest 2009b), or the
SIMP method (Kreissl et al. 2011b). To keep a valid
mesh, the gradient step must also be limited to small
enough values, which can make convergence slow.

– The augmented Lagrangian algorithm described in
Section 3.3 is well-tailored to impose one or two
equality constraints on shapes. However, many natural
constraints are inequality constraints, and it may be
desirable to impose several of them. In such a case,
it would be necessary to rely on more elaborated
constrained optimization algorithms, such a Sequential
Linear Programming (SLP); see for instance Nocedal
and Wright (2006) about this point.

The discussed numerical examples have been imple-
mented in the FreeFem++ environment. We hope that it
proves useful to students, researchers and industrials, as a

2785

C. Dapogny et al.

basis for further developments and applications, such as the
study of different geometric configurations, involving for
instance other optimization criteria and constraints.

Appendix A: Sketch of the proof
of Theorem 2

The differentiability of the solution (u, p) to the Navier-
Stokes system (1) with respect to the domain is a technical,
albeit quite classical matter, and we admit the result,
referring for instance to Henrot and Pierre (2005) for the
rigorous definition of this notion, and to Henrot and Privat
(2010) or de La Sablonière et al. (2011) for this precise
calculation. The derivative (u′, p′) of (u, p) with respect to
the domain, in the direction θ ∈ �ad , is solution to the
problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−ν	u′ + (∇u)u′ + (∇u′)u + ∇p′ = 0 in �,

div(u′) = 0 in �,

σ(u′, p′)n = 0 on �out,

u′ = 0 on �in,

u′ = − (
∂u
∂n

)
(θ .n) on �.

(32)

Also, we only present the calculation of the shape
derivative of the functional D(�) given by (5), the
calculation being on any point easier in the case of E(�);
see de La Sablonière et al. (2011) if need be.

Using the chain rule from the definition (5) of D(�)

yields:

D′(�)(θ) =
∫

�out

u′ · (u − uref) ds. (33)

The main idea of the proof consists in using the adjoint state
(vd , qd), solution to (12): performing several integrations by
parts allows to eliminate the unknown derivatives (u′, p′)
from the expression (33). More precisely, multiplying the
first equation in (32) by vd and integrating by parts yields

0 =
∫

�

(−ν	u′ + (∇u)u′ + (∇u′)u + ∇p′) · vd dx

=
∫

�

(2ν e(u′) : e(vd) − div(vd)p′ + (∇u)u′ · vd

+(∇u′)u · vd) dx −
∫

∂�

σ(u′, p′)n · vd ds

=
∫

�

(2ν e(u′) : e(vd) + (∇u)u′ · vd + (∇u′)u · vd) dx

(34)

where the boundary integral has vanished thanks to the
boundary conditions satisfies by (u′, p′) and (vd , qd).

Likewise, multiplying the first equation in (12) by u′ and
integrating by parts, we obtain:

0 =
∫

�

(
−ν	vd + (∇u)T v − (∇vd)u + ∇qd

)
· u′ dx

=
∫

�

(
2ν e(u′) : e(vd) + (∇u)u′ · vd − (∇vd)u · u′) dx

−
∫

∂�

σ(vd , qd)n · u′ ds. (35)

Combining Eqs. 34 and (35) leads to:

−
∫

�

((∇u′)u · vd + (∇vd)u · u′) dx =
∫

∂�

σ(vd , qd)n ds.

(36)

Now using the identity
∫

�

(∇vd) · u · u′ dx =
∫

∂�

(vd · u′)(u · n) ds

−
∫

�

(∇u′)u · vd dx, (37)

which again follows from integration by parts, (36) rewrites:
∫

∂�

(σ (vd , qd)n · u′ + (u′ · vd)(u · n)) ds = 0. (38)

Eventually, taking into account the boundary conditions in
the systems (1), (10) and (32) yields:

D′(�)(θ) =
∫

�out

(u − uref) · u′ ds

=
∫

�out

(σ (vd , qd)n + (u · n)vd) · u′ ds

= −
∫

�

(σ (vd , qd)n + (u · n)vd) · u′ ds

=
∫

�

(σ (vd , qd)n + (u · n)vd) · ∂u
∂n

θ · n ds.

(39)

We now use the boundary conditions u = 0 and vd = 0 on
� to simplify this last expression. For any tangential vector
field τ : � → R

d to �, they imply that ∂u
∂τ

= 0, and so,
using that div(u) = 0,

∂u
∂n

· n = 0 (40)

the same relation holds for vd . Hence (39) rewrites:

D′(�)(θ) =
∫

�

2ν e(vd)n · ∂u
∂n

θ · n ds.

After a few algebraic manipulations based again on (40), we
eventually obtain:

D′(�)(θ) =
∫

�

2ν e(u) : e(vd)(θ · n) ds, (41)

which is the desired result, and terminates the proof of
Theorem 2.

2786

Geometrical shape optimization in fluid mechanics using FreeFem++

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

Aage N, Poulsen TH, Gersborg-Hansen A, Sigmund O (2008)
Topology optimization of large scale stokes flow problems. Struct
Multidisc Optim 35:175–180

Abraham F, Behr M, Heinkenschloss M (2005) Shape optimization in
unsteady blood flow: a numerical study of non-newtonian effects.
Comput Methods Biomech Biomed Eng 8:3. https://doi.org/10.
1080/10255840500309562

Agoshkov V, Quarteroni A, Rozza G (2006) Shape design in aorto-
coronaric bypass anastomoses using perturbation theory. SIAM J
Numer Anal 44(1):367–384

Allaire G (2007) Conception optimale de structures, vol 58. Springer,
Berlin

Allaire G, Pantz O (2006) Structural optimization with freefem++.
Struct Multidiscip Optim 32(3):173–181

Allaire G, Jouve F, Toader AM (2004) Structural optimization using
sensitivity analysis and a level-set method. J Comput Phys
194(1):363–393

Amstutz S (2005) The topological asymptotic for the navier-stokes
equations. ESAIM: Control Optim Calc Var 11(3):401–425

Badra M, Caubet F, Dambrine M (2011) Detecting an obstacle
immersed in a fluid by shape optimization methods, unpublished

Baker TJ (2002) Mesh movement and metamorphosis. Eng Comput
18(1):188–198

Bendsoe MP, Sigmund O (2013) Topology optimization: theory,
methods, and applications. Springer Science & Business Media

Bergounioux M, Privat Y (2013) Shape optimization with Stokes
constraints over the set of axisymmetric domains. SIAM J Control
Optim 51(1):599–628. https://doi.org/10.1137/100818133

Borrvall T, Petersson J (2003) Topology optimization of fluids in
stokes flow. Int J Numer Meth Fluids 41:77–107

Bourot JM (1974) On the numerical computation of the optimum
profile in stokes flow. J Fluid Mech 65(3):513–515

Bruneau CH, Chantalat F, Iollo A, Jordi B, Mortazavi I (2013) Mod-
elling and shape optimization of an actuator. Struct Multidiscip
Optim 48(6):1143–1151

Bucur D, Buttazzo G (2002) Variational methods in some shape
optimization problems. Appunti dei Corsi Tenuti da Docenti della
Scuola. [Notes of Courses Given by Teachers at the School].
Scuola Normale Superiore, Pisa

Burger M (2003) A framework for the construction of level set
methods for shape optimization and reconstruction. Interfaces
Free Bound 5(3):301–329

Burkardt J, Gunzburger M, Peterson J (2002) Insensitive functionals,
inconsistent gradients, spurious minima, and regularized func-
tionals in flow optimization problems. Int J Comput Fluid Dyn
16(3):171–185. https://doi.org/10.1080/10618560290034663

Carlson HW, Middleton WD (1964) A numerical method for the
design of camber surfaces of supersonic wingswith arbitrary
planforms. NASA Technical report

Challis V, Guest J (2009) Level set topology optimization of fluids in
stokes flow. Int J Numer Meth Eng 79:1284–1308

Challis VJ, Guest J (2009) Level set topology optimization of fluids in
stokes flow. Int J Numer Methods Eng 79(10):1284–1308

Choi JH, Kim KY, Chung DS (1997) Numerical optimization for
design of an automotive cooling fan. Tech. rep., SAE Technical
Paper

Ciarlet P (2002) The finite element method for elliptic problems. Soc
Ind Appl Math. https://doi.org/10.1137/1.9780898719208 http://
epubs.siam.org/doi/abs/10.1137/1.9780898719208

Çlabuk H., Modi V (1992) Optimum plane diffusers in laminar flow. J
Fluid Mech 237:373–393

De Gournay F (2006) Velocity extension for the level-set method
and multiple eigenvalues in shape optimization. SIAM J Control
Optim 45(1):343–367

de La Sablonière XD, Mauroy B, Privat Y (2011) Shape minimization
of the dissipated energy in dyadic trees. Discrete Contin Dyn Syst
Ser B 16(3):767–799. https://doi.org/10.3934/dcdsb.2011.16.767

Dobrzynski C, Frey P (2008) Anisotropic delaunay mesh adaptation
for unsteady simulations. In: Proceedings of the 17th international
meshing roundtable

Dogan G, Morin P, Nochetto RH, Verani M (2007) Discrete gradient
flows for shape optimization and applications. Comput Methods
Appl Mech Eng 196(37):3898–3914

Donea J, Huerta A (2003) Finite element methods for flow problems.
Wiley, New York

Duan XB, Ma YC, Zhang R (2008) Shape-topology optimization
for navier-stokes problem using variational level set method. J
Comput Appl Math 222:487–499

Ern A, Guermond JL (2013) Theory and practice of finite elements,
vol 159. Springer Science & Business Media

Evgrafov A (2006) Topology optimization of slightly compressible
fluids. ZAMM-J Appl Math Mech/Z Angew Math Mech
86(1):46–62

Frey P, George PL (2008) Mesh generation, application to Finite
Elements. Wiley, New York

Garcke H, Hecht C, Hinze M, Kahle C (2015) Numerical approxi-
mation of phase field based shape and topology optimization for
fluids. SIAM J Sci Comput 37(4):A1846–A1871

Gersborg-Hansen A, Sigmund O, Haber RB (2005) Topology
optimization of channel flow problems. Struct Multidiscip Optim
30(3):181–192

Girault V, Raviart PA (1986) Finite element methods for Navier-
Stokes Equations. Springer, Berlin

Guest J, Prévost J (2006) Topology optimization of creeping fluid
flows using a darcystokes finite element. Int J Numer Meth Eng
66:461–484

Gunzburger MD (2003) Perspectives in flow control and optimization,
vol 5. SIAM, Philadelphia

Hecht F, Pironneau O, Le Hyaric A, Ohtsuka K (2005) Freefem++
manual

Henrot A, Pierre M (2005) Variation et optimisation de formes, vol 48.
Springer, Berlin. https://doi.org/10.1007/3-540-37689-5

Henrot A, Privat Y (2008) Une conduite cylindrique n’est pas optimale
pour minimiser l’énergie dissipée par un fluide. C R Math Acad
Sci Paris 346(19–20):1057–1061. https://doi.org/10.1016/j.crma.
2008.09.005

Henrot A, Privat Y (2010) What is the optimal shape of a pipe.
Arch Ration Mech Anal 196(1):281–302. https://doi.org/10.1007/
s00205-009-0243-8

Hicks RM, Henne PA (1978) Wing design by numerical optimization.
J Aircr 15(7):407–412

Hicks RM, Murman EM, Vanderplaats GN (1974) An assessment of
airfoil design by numerical optimization

Jameson A (1988) Aerodynamic design via control theory. J Sci
Comput 3(3):233–260

Kreissl S, Maute K (2012) Levelset based fluid topology optimization
using the extended finite element method. Struct Multidiscip
Optim 46(3):311–326

Kreissl S, Pingen G, Maute K (2011a) An explicit level set approach
for generalized shape optimization of fluids with the lattice
Boltzmann method. Int J Numer Methods Fluids 65(5):496–519

2787

https://doi.org/10.1080/10255840500309562
https://doi.org/10.1080/10255840500309562
https://doi.org/10.1137/100818133
https://doi.org/10.1080/10618560290034663
https://doi.org/10.1137/1.9780898719208
http://epubs.siam.org/doi/abs/10.1137/1.9780898719208
http://epubs.siam.org/doi/abs/10.1137/1.9780898719208
https://doi.org/10.3934/dcdsb.2011.16.767
https://doi.org/10.1007/3-540-37689-5
https://doi.org/10.1016/j.crma.2008.09.005
https://doi.org/10.1016/j.crma.2008.09.005
https://doi.org/10.1007/s00205-009-0243-8
https://doi.org/10.1007/s00205-009-0243-8

C. Dapogny et al.

Kreissl S, Pingen G, Maute K (2011b) Topology optimization for
unsteady flow. Int J Numer Methods Eng 87(13):1229–1253.
https://doi.org/10.1002/nme.3151

Lions JL (1971) Optimal control of systems governed by partial
differential equations, vol 170. Springer, Berlin

Litman A, Lesselier D, Santosa F (1998) Reconstruction of a two-
dimensional binary obstacle by controlled evolution of a level-set.
Inverse Prob 14(3):685. http://stacks.iop.org/0266-5611/14/i=3/
a=018

Mohammadi B, Pironneau O (2004) Shape optimization in fluid
mechanics. Annu Rev Fluid Mech 36:255–279

Mohammadi B, Pironneau O (2010) Applied shape optimization for
fluids. Oxford University Press, London

Munson B, Rothmayer A, Okiishi T, Huebsch W (2013) Fundamentals
of fluid mechanics, 7th edn. Wiley, New York

Murat F, Simon J (1976) Sur le contrôle par un domaine géométrique.
Technical report RR-76005

Nocedal J, Wright S (2006) Numerical optimization. Springer, Berlin
Novotny AA, Sokołowski J (2012) Topological derivatives in shape

optimization. Springer Science & Business Media
Osher S, Sethian JA (1988) Fronts propagating with curvature-

dependent speed: algorithms based on hamilton-jacobi formula-
tions. J Comput Phys 79(1):12–49

Pingen G, Evgrafov A, Maute K (2007) Topology optimization of flow
domains using the lattice boltzmann method. Struct Multidiscip
Optim 34(6):507–524

Pingen G, Waidmann M, Evgrafov A, Maute K (2010) A parametric
level-set approach for topology optimization of flow domains.
Struct Multidiscip Optim 41(1):117–131

Pironneau O (1973) On optimum profiles in stokes flow. J Fluid Mech
59(1):117–128

Pironneau O (1974) On optimum design in fluid mechanics. J Fluid
Mech 64(01):97–110

Pironneau O (2012) Optimal shape design for elliptic systems.
Springer Science & Business Media

Sethian JA, Wiegmann A (2000) Structural boundary design via level
set and immersed interface methods. J Comput Phys 163(2):489–
528

Sigmund O (2001) A 99 line topology optimization code written in
matlab. Struct Multidiscip Optim 21(2):120–127

Sokołowski J, Zolésio JP (1992) Introduction to shape optimization.
Springer Series in Computational Mathematics. Springer, Berlin

Temam R (1977) Navier-stokes equation: theory and numerical
analysis. North Holland, Amsterdam

Wang MY, Wang X, Guo D (2003) A level set method for
structural topology optimization. Comput Methods Appl Mech
Eng 192(1):227–246

Zhou S, Li Q (2008) A variational level set method for the topology
optimization of steady-state navier-stokes flow. J Comput Phys
227:10178–10195

2788

https://doi.org/10.1002/nme.3151
http://stacks.iop.org/0266-5611/14/i=3/a=018
http://stacks.iop.org/0266-5611/14/i=3/a=018

	Geometrical shape optimization in fluid mechanics using FreeFem++
	Abstract
	Abstract
	Introduction
	Shape optimization for flows governed by the Navier-Stokes equations
	The Navier-Stokes equations
	Statement of the shape optimization problem
	Shape sensitivity analysis using Hadamard's boundary variation method

	Numerical methods
	Description of the numerical setting and outline of the algorithm
	Numerical resolution of the Navier-Stokes equations
	Dealing with the nonlinear convective term using Newton's method
	Choice of the Finite Element discretization

	The augmented Lagrangian algorithm for equality-constrained problems
	Mesh-related issues
	Extension-regularization of the shape gradient
	Calculation of the curvature
	Algorithmic description of the implemented method

	Practical implementation of the shape optimization algorithm
	Organization of the repository and of the program
	Main parameters
	Main macros
	Definition of the geometry and of the Finite Element setting
	Practical calculation of the mean curvature
	Resolution of the flow equations
	Calculation of the objective function and of the shape derivative
	Main optimization loop : gradient descent with line search

	Numerical illustrations
	Minimization of the dissipated energy in a bend
	Minimization of the dissipated energy in a ramified structure with volume constraint
	Minimization of the dissipated energy in a ramified structure with perimeter constraint
	Minimization of the discrepancy with a reference velocity profile
	Energy dissipation around an obstacle

	Conclusion and perspectives
	Appendix 1
	Publisher's Note
	References

