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A New Approximation of the Schur Complement in

Preconditioners for PDE Constrained Optimization
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Saddle point systems arise widely in optimization problems with con-
straints. The utility of Schur complement approximation is now broadly ap-
preciated in the context of solving such saddle point systems by iteration. In
this short manuscript, we present a new Schur complement approximation for
PDE constrained optimization, an important class of these problems. Block
diagonal and block triangular preconditioners have previously been designed
to be used to solve such problems along with minres and non-standard Con-
jugate Gradients respectively; with appropriate approximation blocks these
can be optimal in the sense that the time required for solution scales linearly
with the problem size, however small the mesh size we use. In this paper, we
extend this work to designing such preconditioners for which this optimality
property holds independently of both the mesh size and of the Tikhonov
regularization parameter β that is used. This also leads to an effective sym-
metric indefinite preconditioner that exhibits mesh and β-independence. We
motivate the choice of these preconditioners based on observations about ap-
proximating the Schur complement obtained from the matrix system, derive
eigenvalue bounds which verify the effectiveness of the approximation, and
present numerical results which show that these new preconditioners work
well in practice.
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1 Introduction

As with many other problems involving optimization with constraints, PDE constrained
optimization problems lead to linear systems of equations with saddle point structure
[1]. In the case of PDE constrained optimization, these matrices are typically of very
large dimension, and iterative methods are usually employed for their solution (see [2,
8, 10]). It is now well understood [1, 6] that a key component in most preconditioning
strategies for such saddle point problems is a good Schur complement approximation.

In this manuscript we consider tracking type PDE constrained optimization problems
of the form

min
y,u

1

2
‖y − ŷ‖2L2(Ω) +

β

2
‖u‖2L2(Ω) (1.1)

s.t. Ly = u in Ω,

y = g on ∂Ω,

where y is the state, ŷ is a desired state, u is the control, β > 0 is a regularization
(or Tikhonov) parameter, and Ω is the domain with boundary ∂Ω. We assume that L
denotes a positive definite elliptic operator, which for simplicity we will take to be the
negative of the Laplacian in this manuscript. The results presented here apply more gen-
erally. Here the control is distributed throughout the domain, but control on subdomains
or boundaries can also be of interest; also ŷ may be defined only on a subdomain (see
[15]). Our primary interest is in the construction of appropriate block preconditioners,
and in particular in the definition of Schur complement approximations, for use in block
diagonal or block triangular preconditioners. In [8], Rees, Dollar and Wathen describe
such Schur complement approximations which are effective for moderately large values
of β, but the performance of which deteriorates as β → 0. In their construction of a
block preconditioner for use with a non-standard inner product, Schöberl and Zulehner
[10] pay particular attention to achieving robust behaviour with respect to small values
of β.

Here we describe a new Schur complement approximation for PDE constrained op-
timization problems which can be employed in these (and other) approaches, and which
yields convergence of the appropriate iterative method in a number of steps which is
independent of the value of the regularization parameter β. We prove the relevant
eigenvalue bounds which guarantee this property.

For the numerical solution of (1.1), we introduce a Lagrange multiplier (or adjoint
variable) p, and assume that equal order finite element approximations are used for y,
u and p. Then, whichever of the discretize-then-optimize or optimize-then-discretize
approach is used, the first order stationarity conditions (or KKT conditions) for the
tracking problem (1.1) become the saddle point problem [8, 15] M 0 K

0 βM −M
K −M 0

 y
u
p

 =

 b
0
d

 . (1.2)
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In (1.2), K denotes the matrix representing the discrete differential operator, M denotes
a Grammian matrix (or mass matrix ) of the relevant finite element basis, and b and d
are vectors containing terms arising from ŷ and the boundary terms of y respectively.
The vectors y, u and p are the discretized versions of y, u and p respectively, precisely
vectors of coefficients for the respective expansions in terms of the finite element basis
functions used. A derivation for this system is given in [8]. The first, second and third
block rows of this matrix system are sometimes referred to as the discretized versions of
the adjoint equation, gradient equation and state equation respectively [15].

This paper is structured as follows. In Section 2, we review three preconditioners
that have been proposed for solving the matrix system arising from the Poisson control
problem (which is (1.2), with K equal to a finite element stiffness matrix). These are
block diagonal, block triangular and symmetric indefinite preconditioners respectively.
In Section 3, we propose a new approximation to the Schur complement which, along
with a good approximation to the mass matrix M , can be incorporated into any of the
three preconditioners of Section 2. We demonstrate analytically why our approximation
to the Schur complement is effective. In Section 4, we present numerical results to show
how well our approximation works within the three preconditioners in practice, and in
Section 5, we make some concluding remarks.

2 Preconditioners for Poisson Control

In this Section, we describe research that has been undertaken to solve the Poisson con-
trol problem: that is the problem (1.1) with L = −∇2. In Section 2.1, we describe in
general terms why certain preconditioners are effective for this problem, based on its
saddle point structure. We then detail three preconditioners that have been proposed
for this problem; block triangular preconditioners (in Section 2.2), block triangular pre-
conditioners (in Section 2.3) and symmetric indefinite preconditioners (in Section 2.4).
We note the Schur complement approximations used in these preconditioners. This work
will later be incorporated when testing the Schur complement approximation that we
propose in Section 3.

2.1 Background

The problem we will solve is of saddle point form, that is[
A BT

B 0

]
︸ ︷︷ ︸

A

[
x1

x2

]
=

[
b1

b2

]
. (2.1)

A review of solution methods for systems of the form (2.1) is given in [1].
It can be easily shown, as in [6], that if we consider the following ‘ideal’ precondi-

tioners P1 and P2 for A:

P1 =

[
A 0
0 BA−1BT

]
, P2 =

[
A 0
B −BA−1BT

]
,
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then the spectra of P−1
1 A and P−1

2 A are

λ(P−1
1 A) = {1, 1

2
(1±

√
5)}, λ(P−1

2 A) = {1},

provided that the preconditioned systems are nonsingular. In this case, P−1
1 A is di-

agonalizable, but P−1
2 A is not. The quantity BA−1BT , which appears in both of the

preconditioners above, is the Schur complement, which we will denote by S for the
remainder of this manuscript.

The fact that we obtain these eigenvalue properties if we precondition a matrix A
with P1 or P2 implies that an appropriate Krylov subspace method will converge in 3/2
iterations respectively [6]. Of course implementing such a method in practice would
involve exactly forming S and finding the exact solution of linear systems with both A
and S. This would in general be wasteful, or indeed infeasible, since S would generally be
dense even when A and B are sparse. However, we can instead proceed by constructing
approximations Â and Ŝ to A and S respectively, and apply the preconditioners

P̂1 =

[
Â 0

0 Ŝ

]
, P̂2 =

[
Â 0

B −Ŝ

]
. (2.2)

The formulations of the preconditioners P̂1 and P̂2 motivate our discussion in Sections
2.2 and 2.3 respectively.

A third option is to construct a preconditioner for the matrix system (2.1) of the
form

P̂3 =

[
Â BT

B BÂ−1BT − Ŝ

]
=

[
I 0

BÂ−1 I

] [
Â BT

0 −Ŝ

]
,

meaning that one application of the approximation of Ŝ and two of Â are required to
effect this preconditioner. We will discuss this preconditioner further in Section 2.4.

In Sections 2.2–2.4, we consider three ‘optimal’ preconditioners, one each of the form
P̂1, P̂2 and P̂3. The word ‘optimal’ is used to mean that an appropriate Krylov subspace
method with the preconditioner has linear complexity in matrix size, or alternatively that
the number of iterations required for convergence of the solver is bounded independently
of the mesh, with linear work required for each iteration. The solver detailed in Sec-
tion 2.4 was designed to yield β-independent convergence as well as mesh-independent
convergence.

2.2 Symmetric positive definite (block diagonal) precondition-
ers

We apply the theory of Section 2.1 to the discrete Poisson control problem (1.2), where

A =

[
M 0
0 βM

]
and B =

[
K −M

]
in terms of the notation of (2.1). We may apply
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the block diagonal preconditioner

P̂1 =

 M̂ 0 0

0 βM̂ 0

0 0 Ŝ

 (2.3)

to the matrix system in (1.2), where M̂ and Ŝ are approximations to the mass matrix
M and the Schur complement S respectively. These approximations must be symmetric
and positive definite, thus P̂1 is symmetric and positive definite, and so it is possible to
build this into a Krylov subspace algorithm for symmetric matrices such as minres [7].
In this way we exploit the advantages of symmetric Krylov subspace solvers, as detailed
in Chapter 6 of [5].

Rees, Dollar and Wathen [8] introduced the block diagonal preconditioner (2.3) for
PDE constrained optimization; they took the mass matrix approximation M̂ to be a fixed
number of steps of Chebyshev semi-iteration [17], exploiting the fact that diag(M)−1M
is very well conditioned for all commonly used finite element basis functions [16]. This
highly effective method for preconditioning mass matrices is discussed further in [17].
The Schur complement approximation

S = KM−1K +
1

β
M ≈ KM−1K =: Ŝ1, (2.4)

is motivated by the fact that the 1
β
M is a higher order term in the step size h than

KM−1K. (Theorem 3 gives upper and lower bounds for Ŝ−1
1 S.) Multigrid cycles are

employed to approximate K each time, and a matrix multiplication to represent M ,
in each application of Ŝ1. This approximation leads to mesh-independent convergence,
but convergence is not β-independent. The preconditioner we recommend in Section 3
enables us to overcome this issue, so that our method is insensitive to the value of β.

2.3 Nonsymmetric positive definite (block triangular) precon-
ditioners

When employing the block triangular preconditioner P̂2 in (2.2), there is no simple
equivalent symmetric formulation, since the matrix P̂2 is not symmetric. This means
that a method such as minres or conjugate gradients with a standard inner product
cannot be used with this preconditioner. However, as outlined in [4, 11, 18] and discussed
in the context of Poisson control by Rees and Stoll in [9], P̂−1

2 A is self-adjoint and positive
definite in the H-inner product, defined as 〈u,v〉H = uTHv, where

H =

[
A− Â 0

0 Ŝ

]
.

One is therefore able to apply the Conjugate Gradient method with this non-standard
inner product, a method known as the Bramble-Pasciak Conjugate Gradient method.
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Note that A− Â must be positive definite for this to define an inner product; sometimes
scaling is required to achieve this.

In [9], the application of this method to Poisson control is discussed. In this context,
we may write the preconditioner as

P̂2 =

 γM̂ 0 0

0 βγM̂ 0

K −M −Ŝ

 , (2.5)

and the inner product as

H =

 M − γM̂ 0 0

0 β(M − γM̂) 0

0 0 Ŝ

 ,

for a parameter γ which ensures that M − γM̂ is positive definite.
As discussed in [9], it is effective to again take M̂ as a fixed number of Chebyshev

semi-iterations, and Ŝ as two multigrid approximations and a matrix multiplication. In
[9] Ŝ was again taken to be Ŝ1 as in (2.4). Particular emphasis is given in [9] of the
ease of choosing γ to ensure that M − γM̂ is positive definite for the PDE contrained
optimization problem.

2.4 Symmetric indefinite preconditioners with block structure

In [10], a preconditioner of the form P̂3 is proposed for use with the Conjugate Gradient
method in a non-standard inner product. Here, Â and Ŝ are chosen such that the
preconditioned system is positive definite with respect to the inner product H̄, where

〈u,v〉H̄ = uT

[
Â− A 0

0 BÂ−1BT − Ŝ

]
︸ ︷︷ ︸

H̄

v.

Applying this method to the Poisson control problem, Schöberl and Zulehner [10] took
approximations

Â =
1

σ
Â0, Ŝ =

1

τ
Ŝ0, (2.6)

with

Â0 =

[
Ŷ 0

0 βM̂

]
, Ŝ0 =

σ

β
Ŷ . (2.7)

Here, Ŷ denotes a multigrid solver applied to the matrix
√
βK+M , and M̂ denotes appli-

cation of the symmetric Gauss-Seidel method to the appropriate mass matrix. (Through-
out the remainder of this manuscript, we will replace this mass matrix approximation
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with the Chebyshev semi-iteration method described above, as this is an effective and
well-founded technique.) The formulation of (2.6) and (2.7) guarantees that

1

σ
Â0 > A,

1

τ
Ŝ0 < BÂ−1

0 BT ,

and hence that the preconditioned system is positive definite in the inner product H̄.
The overall preconditioner for the Poisson control problem therefore looks as follows:

P̂3 =

 1
σ
Ŷ 0 K

0 β
σ
M̂ −M

K −M σKŶ −1K + σ
β
MM̂−1M − σ

τβ
Ŷ

 (2.8)

=

 I 0 0
0 I 0

σKŶ −1 −σ
β
MM̂−1 I


 1

σ
Ŷ 0 K

0 β
σ
M̂ −M

0 0 − σ
τβ
Ŷ

 .

In [10], it is recommended that σ ≈ 1 and τ ≈ 4
3
, and these are the values we use in the

computations of Section 4.

3 An Improved Approximation of the Schur Com-

plement

All three methods detailed in Section 2 rely heavily on an accurate approximation of the
Schur complement. When the block diagonal preconditioner for minres and block trian-
gular preconditioner for Bramble-Pasciak detailed in Section 2 are applied, the iteration
count becomes prohibitively large for small values of β. This is due to the neglected 1

β
M

term in the Schur complement approximation (2.4). A detailed computational analysis
of the asymptotic behaviour of eigenvalue properties of the system (1.2) for small values
of β is given in [13, 14]. In this Section, we introduce an alternative Schur complement
approximation that we prove to give solvers robust to small values of β for each of the
approaches described in the previous Section.

Instead of (2.4), it is easily checked that we can write

S =

(
K +

1√
β
M

)
M−1

(
K +

1√
β
M

)
− 2√

β
K,

which enables us to take the approximation

S ≈ Ŝ2 =

(
K +

1√
β
M

)
M−1

(
K +

1√
β
M

)
(3.1)

by dropping the − 2√
β
K term. We highlight that the term discarded here is O(β−1/2)

rather than O(β−1), as was the case in the Schur complement approximation Ŝ1. When
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we wish to use preconditioners involving the approximate Schur complement, the fac-
torization (3.1) enables us to apply multigrid on two occasions to the matrix K + 1√

β
M

rather than the matrix K, together, as before, with a mass matrix multiplication. We
note the similarity of this to applying the multigrid process Ŷ to the matrix

√
βK+M as

discussed in Section 2.4, but note also that the multigrid cycles are applied at different
points in the preconditioners.

We demonstrate theoretically why this approximation is more potent than the ap-
proximation Ŝ1 in (2.4). Note that Schöberl and Zulehner derive the different Schur
complement approximation (2.6), (2.7) in [10]; we will demonstrate in Section 4 that
our approximation (2.6), (3.1) also fits nicely into the preconditioning framework devel-
oped in [10]. Our analysis also applies to any other differential operator which satisfies
these conditions.

In order to obtain convergence bounds or estimates, we wish to derive eigenvalue
bounds for Ŝ−1

1 S and Ŝ−1
2 S. To calculate the eigenvalues for the former, we first note

Theorems 1 and 2, which are stated on pages 57–60 of [5].

Theorem 1 For the problem (1.2) for Ω ⊂ R2, with a degree of approximation Pm or
Qm with m ≥ 1, the following bound holds:

c1h
2 ≤ vTMv

vTv
≤ C1h

2, ∀v ∈ Rn,

where the constants c1 and C1 are independent of the step size h but dependent on m.
For Ω ⊂ R3, the equivalent result is

c1h
3 ≤ vTMv

vTv
≤ C1h

3, ∀v ∈ Rn.

Theorem 2 For the problem (1.2) for Ω ⊂ R2, with a degree of approximation Pm or
Qm with m ≥ 1, the following bound holds:

c2h
2 ≤ vTKv

vTv
≤ C2, ∀v ∈ Rn,

where the constants c2 and C2 are independent of the step size h but dependent on m.
For Ω ⊂ R3, the equivalent result is

c2h
3 ≤ vTKv

vTv
≤ C2h, ∀v ∈ Rn.

Theorems 1 and 2 give us that in 2D or 3D, for any v ∈ Rn,

ch2 ≤ vTMv

vTKv
≤ C, (3.2)

for constants c and C independent of the step size h, and therefore that the eigenvalues
of K−1M are contained in an interval of the form [ch2, C].

Theorem 3 as stated below is proved in [8] using the result (3.2).
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Theorem 3 The eigenvalues of Ŝ−1
1 S are bounded as follows:

λ(Ŝ−1
1 S) ∈

[
1

β
c̃h4 + 1,

1

β
C̃ + 1

]
,

for constants c̃ and C̃ independent of h and β.

The Schur complement approximation (3.1) is an improved one, as Theorem 4 demon-
strates.

Theorem 4 The eigenvalues of Ŝ−1
2 S satisfy the following bound:

λ(Ŝ−1
2 S) ∈ [

1

2
, 1],

independently of the values of h and β.

Proof. First note that Ŝ2 is always non-singular since M is positive definite, and that
K−1M +

√
βI is positive real and hence invertible. If we denote the eigenvalues of

Ŝ−1
2 S by µ, and the corresponding eigenvectors as x, then

Ŝ−1
2 Sx = µx ⇒

(
KM−1K +

1

β
M

)
x = µ

(
K +

1√
β
M

)
M−1

(
K +

1√
β
M

)
x

⇒
(
KM−1K +

1

β
M

)
x = µ

[
KM−1K +

2√
β
K +

1

β
M

]
x

⇒
(
I +

1

β
K−1MK−1M

)
x = µ

[
I +

2√
β
K−1M +

1

β
K−1MK−1M

]
x

⇒
(
βI +K−1MK−1M

)
x = µ

[
βI + 2

√
βK−1M +K−1MK−1M

]
x

⇒
(
βI + (K−1M)2

)
x = µ(K−1M +

√
βI)2x

⇒ (K−1M +
√
βI)−2

(
βI + (K−1M)2

)
x = µx.

So we deduce for each eigenvalue χ of K−1M , that χ2+β
(χ+

√
β)2

is an eigenvalue of Ŝ−1
2 S.

Now since K−1M is similar to a real symmetric matrix (M1/2K−1MM−1/2), it is

diagonalizable, and hence this describes all eigenvalues of Ŝ−1
2 S. But χ2+β

(χ+
√
β)2

is simply

a function of the form a2+b2

(a+b)2
with a and b real and positive. It is a simple algebraic

task to show that 1
2
≤ a2+b2

(a+b)2
≤ 1, and hence that

λ(Ŝ−1
2 S) ∈ [

1

2
, 1]. (3.3)

2

The simplicity of the bound in Theorem 4 is remarkable. Equally remarkable is the
fact that, to prove that the bound holds, we did not need to use any spectral properties
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of K or M beside the fact that all eigenvalues of K−1M are real. Hence the bound
(3.3) must actually hold for any positive definite self-adjoint operator appropriately
approximated by a symmetric matrix, regardless of the order of the elliptic operator.

In Figure 1, we compare the eigenvalue spectra of Ŝ−1
1 S and Ŝ−1

2 S for the Poisson
control problem for a range of values of β. We can see that for large β, the approximation
Ŝ1 of S is likely to be very effective, as all eigenvalues of Ŝ−1

1 S are clustered very close
to 1; however as β becomes smaller the eigenvalues become increasingly spread out, and
the convergence of an iterative method will generally suffer as a result. However, for the
new approximation Ŝ2, the eigenvalues of Ŝ

−1
2 S are pinned down into a fixed interval as

predicted by (3.3), so an appropriate iterative method should perform well regardless of
how small β is. Note carefully the vertical scales of the individual plots in Figure 1 to
see this.

Note. As the state, control and adjoint are here discretized all using the same
piecewise polynomial approximation spaces (as in [12] for example), it would be possible
to use the discretized gradient equation to eliminate the second block of the matrix
system (1.2), and then solve the remaining 2× 2 block system. The Schur complement
of the resulting system would then be exactly the same as that of the original 3×3 block
system, so the approximation Ŝ2 to S detailed in this Section is equally useful in this
case.

The approximation to the Schur complement we have given here can be used in
effective preconditioners for the three solution approaches we have discussed in Section
2. The use of a fixed number of Chebyshev semi-iteration cycles to approximate mass
matrices, along with our approximation Ŝ2 to S, can be used as part of a block diagonal,
block triangular or symmetric indefinite preconditioner, as in Sections 2.2, 2.3 and 2.4
respectively. Analysis of how well the approximations detailed perform in practice is
given in Section 4. In all three cases, the bound (3.3) ensures that the convergence rate
of the iteration will be independent of β; independence with respect to h is ensures if a
spectrally equivalent approximation of K + 1√

β
M such as a multigrid process is used.

This new Schur complement approximation thus gives rise to 3 new methods for
solving the Poisson control problem. Firstly, we can apply minres with the precondi-
tioner (2.3), but now using Ŝ2 to approximate the Schur complement instead of Ŝ1 as
in (2.4). Secondly, we may apply Bramble-Pasciak cg preconditioned by (2.5) (using
an appropriate choice of γ, which is typically very close to 1), but again replacing the
Schur complement approximation Ŝ1 with Ŝ2. Finally, we may apply a non-standard cg
method with a symmetric indefinite preconditioner of the form

P̂3 =

 I 0 0
0 I 0

σKM̂−1 −σ
β
MM̂−1 I

 1
σ
M̂ 0 K

0 β
σ
M̂ −M

0 0 − 1
τ
Ŝ2

 , (3.4)

with M̂ again an application of Chebyshev semi-iteration to the relevant mass matrix.
The bound (3.3) guarantees that we may choose appropriate values σ and τ in the same
way as we choose γ for the Bramble-Pasciak cg method, using Chebyshev semi-iteration
results described in [9]. We test our three new methods in Section 4.
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Figure 1: Spectra of Ŝ−1
1 S [(a),(c),(e)] and Ŝ−1

2 S [(b),(d),(f)] for β = 10−1, β = 10−4

and β = 10−7, for an evenly-spaced grid on Ω = [0, 1]2 with h = 2−4 here.
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Figure 2: State and control solution to the numerical example in 2D, within Ω\∂Ω with
axes x1 and x2, with h = 2−5 and β = 10−4.

4 Numerical Results

We have demonstrated the theoretical capability of our new Schur complement approxi-
mation by the eigenvalue results of Section 3. To illustrate the practical effectiveness of
the preconditioners we have proposed, we test them with the block diagonal, block trian-
gular and symmetric indefinite preconditioners proposed in [8], [9] and [10] respectively,
and described in Section 2. The problem we consider is given by

min
y,u

1

2
‖y − ŷ‖2L2(Ω) +

β

2
‖u‖2L2(Ω)

s.t. −∇2y = u in Ω,

y = 0 on ∂Ω,

where Ω = [0, 1]2, ∂Ω denotes its boundary, and ŷ is given by

ŷ =

{
1 in [0, 1

2
]2 =: Ω1,

0 in Ω\Ω1.

The solution for the state and control of this problem when β = 10−4 is shown in Figure
2.

In Table 1, we compare the number of minres iterations required to solve this
problem to a tolerance of 10−6 using block diagonal preconditioner (2.3) for a range
of h and β, using the approximations Ŝ1 and Ŝ2 to the Schur complement.

To exemplify that our method is equally applicable in three dimensions, we present
results for solving the problem above, except with Ω = [0, 1]3 and Ω1 = [0, 1

2
]3, using

minres with block diagonal preconditioner (2.3), in Table 2. In Table 3, we show the
number of Bramble-Pasciak Conjugate Gradient iterations required to solve the test
problem using the block triangular preconditioner (2.5), approximating S by Ŝ1 and Ŝ2.
Finally in Table 4, we compare the number of Conjugate Gradient iterations with Â and
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Approximation Ŝ1 Approximation Ŝ2

β β
10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

h

2−4 9 21 73 248 13 16 15 −†
2−5 9 20 82 484 13 17 16 15
2−6 9 22 85 592 13 17 16 16
2−7 11 22 84 619 13 17 16 16
2−8 11 21 85 646 15 17 17 16

Table 1: Number of minres iterations with block diagonal preconditioner (2.3) required
to solve the test problem in 2D, using Q1 basis functions for state and control, for a
variety of h and β. Results are given when the Schur complement is approximated as
Ŝ1 and Ŝ2.

Approximation Ŝ1 Approximation Ŝ2

β β
10−1 10−3 10−5 10−7 10−1 10−3 10−5 10−7

h

2−2 8 12 26 28 10 14 −† −†
2−3 8 12 42 130 10 16 14 −†
2−4 8 12 48 272 12 17 15 13
2−5 10 14 49 341 12 18 16 16

Table 2: Number of minres iterations with block diagonal preconditioner (2.3) required
to solve the test problem in 3D, using Q1 basis functions for state and control, for a
variety of h and β. Results are given when the Schur complement is approximated as
Ŝ1 and Ŝ2.

Ŝ defined by (2.6), (2.7) as described in [10], with the number of iterations required when
using the preconditioner (3.4) with Schur complement approximation Ŝ2 (except that we
use Chebyshev semi-iterations to approximate a mass matrix rather than Gauss-Seidel
iteration as in [10]; this equally improves both approaches).

On each occasion, we have used 20 Chebyshev semi-iterations to approximate a mass
matrix, and 2 algebraic multigrid V-cycles with 2 pre- and post- Jacobi smoothing steps
whenever a multigrid solve is required. We employ the Harwell Science Library code
HSL MI20 [3] via a Matlab interface for the (algebraic) multigrid cycles. In Tables 1–4,
† denotes that the coarsening failed when the code HSL MI20 was applied to K + 1√

β
M ,

which occurs only when h is large and β is very small. This clearly occurs in relatively
few cases, and is caused by the presence of positive off-diagonal entries. The use of large
h and small β is in any case not an interesting practical parameter regime.

Tables 1–4 clearly illustrate the potency of our new Schur complement approximation;
h and β-independent convergence is clearly exhibited in all cases. In Tables 1–3, we
can see that for larger values of β, the approximation of the Schur complement Ŝ1 is
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Approximation Ŝ1 Approximation Ŝ2

β β
10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

h

2−4 6 18 100 600 9 12 14 −†
2−5 7 19 106 815 10 13 15 16
2−6 7 19 109 > 1500 10 14 15 16
2−7 7 19 117 1334 11 14 16 17
2−8 8 20 116 1269 11 14 16 17

Table 3: Number of Bramble-Pasciak cg iterations with block triangular preconditioner
(2.5) required to solve the test problem in 2D, using Q1 basis functions for state and
control, for a variety of h and β. Results are given when the Schur complement is
approximated using Ŝ1 and Ŝ2.

Approximation as in [10] Approximation Ŝ2

β β
10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

h

2−4 11 14 13 −† 8 11 12 −†
2−5 11 14 16 14 9 13 12 14
2−6 11 15 17 16 9 13 13 15
2−7 12 16 18 19 9 14 13 15
2−8 12 16 18 20 10 14 14 15

Table 4: Number of cg iterations with symmetric indefinite preconditioner (2.8) required
to solve the test problem in 2D, using Q1 basis functions for state and control, for a
variety of h and β. Results are given with Â and Ŝ as stated in (2.6), (2.7) and detailed
in [10], and using the preconditioner (3.4) with Ŝ approximated using Ŝ2.

marginally more effective than the approximation Ŝ2, as the eigenvalues of Ŝ−1
1 S are

more clustered than those of Ŝ−1
2 S (see Figure 1). However, as β gets smaller, it is

easily observable that as the eigenvalues of Ŝ−1
1 S become less clustered but those of

Ŝ−1
2 S remain in the interval [1

2
, 1], our new Schur complement approximation performs

far better. Table 4 also illustrates that our approximations of mass matrices and Schur
complement leaves us with a preconditioner that is competitive with the symmetric
indefinite preconditioner proposed in [10].

5 Conclusions

In this paper, we have first reviewed three solvers previously proposed for the Poisson
control problem: a minres approach with a block diagonal preconditioner, a Bramble-
Pasciak cg solver with a block triangular preconditioner, and a cg method with a
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symmetric indefinite preconditioner. We have also detailed the relevant approxima-
tions to the mass matrices and Schur complements which were used in these solvers.
We then proposed a new approximation to the Schur complement, and proved that
β-independence as well as mesh-independence should be achieved when it is applied.

The new Schur complement approximation, combined with a Chebyshev semi-iteration
method to approximate the relevant mass matrices, is readily built into the symmetric
indefinite preconditioner discussed in [10], and in the block diagonal and block triangular
preconditioned solvers discussed in [8] and [9]. In numerical experiments, our suggested
preconditioners are demonstrated to give rapid parameter-independent convergence in
each case.
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