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Abstract

Discrete gradients are used to guarantee preservation of a first
integral in a numerical approximation of a differential system. We
propose a new method that constructs discrete gradients, potentially
an infinite set of them, including the known families.

1 Context and Background

Geometric integration concerns the discretisation of differential equations
in such a way that some geometric or physical property is preserved
exactly , that is, without round off error. Some general references on
geometric integration are (Leimkuhler and Reich, 2004; Hairer, Lubich and
Wanner, 2006; Quispel and McLachlan, 2006).
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Discrete gradients arise in one particular area of geometric integration,
that of integral preserving integrators (IPIs). IPIs are numerical
integration algorithms that preserve exactly one or more first integrals of a
differential equation. Such integrals include, but are not resticted to,
energy, momentum and angular momentum, and the differential equations
include Hamiltonian as well as non Hamiltonian ones. IPIs can be applied
to ordinary differential equations, (ODEs) (McLachlan, Quispel and
Robidoux , 1999; McLaren and Quispel, 2004; Quispel and McLaren, 2008)
as well as to semi-discretised partial differential equations (Matsuo, 2007;
Celledoni et al).

The basic steps in constructing an IPI for an ODE that possesses a first
integral V (x) is as follows:

1. Write the ODE in the following form:ẋ = S(x)∇V (x) (1.1)

where S(x) is a skew symmetric matrix, ẋ = dx/dt andx = (x1, x2, . . . , xn). This can be done for a generic integral V
(McLachlan, Quispel and Robidoux, 1999).

2. Discretise Equation (1.1) as follows:x′ − x
h

= S̃(x, x′)∇(V )(x, x′), (1.2)

where, by a slight abuse of notation, x denotes the numerical
approximation to x(nh) and x′ to x ((n + 1)h). Here S̃(x, x′) is any
skew symmetric matrix that approaches S(x) in the continuum limit
as x′ → x and the time step h → 0, and where

(x′ − x) · ∇(V ) = V (x′) − V (x)
∇(V )(x, x) = ∇V (x) (1.3)

Substituting Equation (1.1) into the first of Equation (1.3), it can be seen
that V (x′) = V (x), that is, the integral V is preserved. All that remains is
to find an expression for a discrete gradient ∇(V ) satisfying Equations
(1.3), the solutions to which are far from unique.

Several discrete gradients have been found in the literature (Harten, Lax
and van Leer, 1983; Itoh and Abe, 1988; Gonzales, 1996) and it may be
fair to say that their derivations have been ad hoc. In this paper, we
propose a systematic method to derive discrete gradients.
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2 Discrete gradients; definition, examples and

applications

Definition 2.1. Given a differentiable function V on R
n, a discrete

gradient is a vector-valued function ∇(V ) = ∇(V )(x′, x) which satisfies

(x′ − x) · ∇(V ) = V (x′) − V (x)
∇(V )(x, x) = ∇V (x),

where x = (x1, x2, . . . , xn).

To date, there have been three main families of examples.

Example 2.2. [Harten, Lax and van Leer, 1983] Suppose we are given a
domain Ω ⊂ R

n with co-ordinates (x1, . . . , xn), and V a scalar function on
Ω with gradient

∇V = (V1, . . . Vn), Vi =
∂

∂xi

V.

Suppose further that x, x′ ∈ Ω are such that the straight line path from x
to x′ is contained in Ω. Then we define

∇V (x, x′) := (V 1, . . . , V n), V i :=

∫ 1

0
Vi((1 − ξ)x + ξx′) dξ. (2.1)

Then we have
∑n

1 (∇V )i(x, x′) · (x′
i − xi) =

∫ 1
0

∑n
1 Vi((1 − ξ)x + ξx′)(x′

i − xi) dξ

=
∫ 1
0

d
dξ

V ((1 − ξ)x + ξx′) dξ

= V (x′) − V (x)
(2.2)

and
limx−→x′ ∇V (x, x′) = ∇V (x).

Example 2.3. [Itoh and Abe, 1988] constructed families of discrete
gradients in terms of difference quotients. One example in R

2 is, forx = (x, y),

∇V (x′, x) =




V (x′, y) − V (x, y)

x′ − x

V (x′, y′) − V (x′, y)

y′ − y


 .
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For a third family of discrete gradients, see (Gonzalez, 1996).

Discrete gradients can be used, for example, to ensure conservation of
energy in numerical approximations of Hamiltonian systems. If the
Hamiltonian system and its approximation areẋ = J∇H(x), x′ − x

h
= J∇H(x′, x),

where h is the timestep and

J =


 0 In

−In 0


 ,

then since J is skew-symmetric, we have both

dH

dt
= ∇H · ẋ = 0

and
H(x′) − H(x) = ∇H · (x′ − x) = 0.

A theorem of (Ge and Marsden, 1988) states that: “Let H be a
hamiltonian which has no other conserved quantities other than functions
of H. . . If the numerical approximation is both symplectic and conserves H
exactly, then it is the time advance map for the exact Hamiltonian system
up to a reparametrization of time. . . For system with integrals, this result
can be applied to the induced algorithm on the symplectic or Poisson
reduced spaces. . . ”. This result should not be misunderstood as saying
that algorithms that conserve all integrals do not exist. Indeed,
McLachlan, Quispel and Robidoux (1999) show how to preserve all known
integrals of an ordinary differential system using discrete gradients.

Example 2.4. The rigid body system reduces toẋ = x×∇H

where x = (x, y, z) ∈ R
3 and H(x) = x2/a2 + y2/b2 + z2/c2. There are two

conserved quantities, namely

R = x2 + y2 + z2, H = x2/a2 + y2/b2 + z2/c2.

4



Since x = 1
2∇(R), the approximate schemex′ − x = 1

2h∇R(x′, x) ×∇H(x′, x)
where ∇R is a discrete gradient of R and ∇H a discrete gradient of H,
guarantees the two conserved quantities:

R(x′) − R(x) = 0, H(x′) − H(x) = 0.

3 Construction of discrete gradients

The construction of families of discrete gradients from given types of
approximation data for functions, rests on the following observation.

Suppose the scalar function V : R
n → R, and x′, x ∈ R

n are given. If
Ṽ : R

n → R satisfies both

Ṽ (x′) = V (x′), Ṽ (x) = V (x), (3.1)

then for any discrete gradient ∇Ṽ of Ṽ we have

(x′ − x)∇Ṽ = V (x′) − V (x).
Theorem 3.1. Suppose that Ṽ = Ṽ(x′,x) is constructed from V according

to some algorithmic function approximation process that includes as part
of the input, specific points x′ and x, such that the Equations (3.1) hold.
Then a discrete gradient for Ṽ yields a discrete gradient for V .

Proof: By construction, V and Ṽ agree at the two points x′ and x. If we
take the discrete gradient of V at the point (x′x) to be ∇Ṽ , we have

(x′ − x) · ∇V = (x′ − x) · ∇Ṽ

= Ṽ (x′) − Ṽ (x)
= V (x′) − V (x).

Further for x′ 6= x,
V (x′) − V (x)x′ − x =

Ṽ (x′) − Ṽ (x)x′ − x ,
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defined component wise. Taking the limit x′ → x on both sides yields
∇V (x, x) = ∇Ṽ (x) = ∇V (x). �

If we take the “prototypical” discrete gradient to be the average value of
the gradient as given in Equation (2.1) then we obtain the following
theorem.

Theorem 3.2. Let V : R
n → R be given. Suppose for any two points x′

and x, we have that

(i) there exists an open set Ω ⊂ R
n, such that the straight line

(1 − λ)x + λx′, 0 ≤ λ ≤ 1 is contained wholly within Ω, and

(ii) there exists Ṽ = Ṽ(x′,x) : Ω → R, depending on x′ and x, satisfying the
Equations (3.1).

Then a discrete gradient for V is given by

∇V (x′, x) =
(
V 1, . . . , V n

)

where

V i =

∫ 1

0

∂Ṽ

∂xi

((1 − λ)x + λx′) dλ.

We will call this the average value discrete gradient defined by the
approximation Ṽ . We now give three examples.

Example 3.3. If for all (x′, x) we take Ṽ(x′,x) = V , we obtain the average
value discrete gradient of (Harten, Lax and van Leer, 1983), Example 2.2.

Example 3.4. In R
2, suppose the approximation data is the value of V at

three points, the given x and x′ and any third noncollinear point x′′. Set
Ṽ (X,Y ) = aX + bY + c for arbitrary (X,Y ) ∈ R

2 near x, x′ and x′′, and
solve the equations Ṽ (x) = V (x), Ṽ (x′) = V (x′) and Ṽ (x′′) = V (x′′) for the
three unknown constants a, b and c. It is easy to calculate the average
value of the gradient of Ṽ on the straight line between x and x′ since Ṽ is
linear, and we obtain the discrete gradient defined by Ṽ to be

∇V (x′, x) =
1

∆


 −V (x)(y′′ − y′) − V (x′)(y − y′′) − V (x′′)(y′ − y)

V (x)(x′′ − x′) + V (x′)(x − x′′) + V (x′′)(x′ − x)




where x = (x, y), x′ = (x′, y′), x′′ = (x′′, y′′), (3.2)
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and where

∆ = det




x y 1

x′ y′ 1

x′′ y′′ 1


 .

Indeed, the families of discrete gradients constructed by (Itoh and Abe,
1988), in terms of difference quotients, can all be derived according to
Theorem 3.2 from linear approximations of V : R

n → R with the
approximation data being the value of V at n + 1 specific points.

Item (ii) in Theorem 3.2 is achieved in an algorithmic fashion by taking a
finite dimensional function space defined in terms of certain moments and
function values at given points, that are relevant to the problem at hand.
One then takes the projection of V to the finite dimensional function space.
For example, by taking x and x′ to be two vertices of a simplex,
approximations of V to any order can be obtained by using standard
approximations used in Finite Element Theory.

Example 3.5. For V : R
2 → R, suppose the approximation data is the

value of V at three points, the given x and x′ and any third noncollinear
point x′′, and in addition the zeroth moment m0(V ) of V along the straight
line from x to x′, that is, m0(V ) =

∫ 1
0 V ((1 − t)x + tx′) dt. Take the

“shape” of Ṽ to be Ṽ (X,Y ) = aXY + bX + cY + d for arbitrary
(X,Y ) ∈ R

2 near x, x′ and x′′. The constants a, b, c and d are solved by
setting

Ṽ (x) = V (x)
Ṽ (x′) = V (x′)
Ṽ (x′′) = V (x′′)

m0(Ṽ ) = m0(V ).

For simplicity take x′′ in Equation (3.2) to be x′′ = (x′, y), the “corner
point”. The discrete gradient is then

∇V (x′, x) =




V (x) + 3V (x′) + 2V (x′′) − 6m0(V )

2(x′ − x)

−
3V (x) + V (x′) + 2V (x′′) − 6m0(V )

2(y′ − y)




.
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At the present time, we know of no examples of discrete gradients that do
not arise by applying Theorem 3.2 to a particular finite dimensional
approximation to V . We have already shown this is true for two of the
known families. To show it is true for the example due to Gonzalez, one
takes as approximation data, in addition to the values V (x) and V (x′), the
component of the gradient of V at the point 1

2 (x + x′) in the direction
normal to x′ − x. However, it is an open problem as to whether any
discrete gradient can be obtained in this way.

Finally, we note that there is no correlation between the order of the
approximation used and the order of the scheme. Indeed, for scalar
functions on R, there is only one discrete gradient (Moan, 2003), which is

∇V (x′, x) =
V (x′) − V (x)

x′ − x
.
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