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I n  this paper, the change in energy dissipation due to a small hump on a body in 
a uniform steady flow is calculated. The result is used in conjunction with the 
variational methods of optimal control to obtain the optimality conditions for 
four minimum-drag problems of fluid mechanics. These conditions imply that the 
unit-area profile of smallest drag has a front end shaped like a wedge of angle 
90". 

1. Introduction 
What is the shape of the body (of, say, given volume) which has minimum 

drag when moved a t  constant speed in a viscous fluid T Although engineers have 
tried to answer similar questions for many years, not much is known theoretically 
about such bodies. At high Reynolds number they must be slender so that the 
boundary layer does not separate. I n  a previous (Pironneau 1973) we have shown 
that the variational methods used in optimal control can be of great help for 
such problems. However, owing to the current state of optimal control theory, 
only the case of low Reynolds number was considered, the flow being described 
by linear equations. We found that the unit-volume body with smallest drag 
has uniform skin friction and is shaped like a rugby ball, with conical front and 
rear ends of angle 120". This result is a consequence of the fact that in Stokes 
flow the change in energy dissipation due to a hump of height E ( S )  on 

23 = {W I s E LO, 112} 

is 6E = v E ( S )  - ~ S + O ( E ( ) ) ,  
1s Il::r (1 .1  

where u(x) is the fluid velocity vector. 
I n  this paper, we shall essentially generalize this result to laminar flow a t  

higher Reynolds number. We shall show that, in some sense, the steady Navier- 
Stokes equations can be linearized about u(x) and that the same variational 
methods of optimal control can then be used to derive a formula similar to (1 .1) .  
We obtain 

t Present address: IRIA Laboria, Eocquencourt, 78150 Le Chesnay, France. 
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98 0. Pironneau 

where u, together with q, is a solution oft  

v V ~ W - V U . W + U . V W  = -u.Vu+Vq, V . W  = 0; wIS = 0, w I ,  = 0. (1.3) 

I n  optimal control theory, w is known as the co-state vector of u. The unit-volume 
body with smallest drag must then be such that 

It is unfortunate that (1.2) contains an element like w for which there is no 
simple mechanical interpretation. Equation (1.4) must simply be looked upon 
as the equation of the body with smallest drag; its complexity reflects the com- 
plexity of the problem. Moreover, as pointed out in the previous paper, in cases 
where the steady Navier-Stokes equation can be solved numerically, there is a 
natural way of solving (1.4) on a computer. Thus the derivation of equations like 
( 1.4) constitutes the necessary mathematical analysis preceding numerical 
solution of the problem. We shall also derive similar equations (known in opti- 
mal control as 'necessary optimality conditions ') for the following problems. 

(i) Minimum-drag body of given surface area. 
(ii) Minimum-drag shell of a given body. 
(iii) Minimum-drag profile for a given lift. 
All these cases require that awlan be known. However, since w is described 

by an equation very similar to the one that describes u, we can gain some know- 
ledge of awlan via boundary-layer theory. This is done in $4, where we show that 
a wedge of angle 90" satisfies (1.4); that  is, the two-dimensional unit-area body 
with smallest drag has such a wedge-shaped front end. 

This paper is organized such that the mathematical justification of the pre- 
ceding results is a t  the end. Section 2 deals with the statement of the problem; 
then $3  states the main theorem concerning the change in energy dissipation due 
to a small hump, as well as its consequences concerning the optimality conditions 
of the previous problems. I n  $4 we discuss the meaning of the equations obtained, 
and show that they are compatible with those obtained in the previous paper 
for low Reynolds number flow. The main theorem is proved in $ 5 .  

2. Statement of the problem 
Consider the optimal control problem 

where vij = +v(aui/axj + auj/?xi) (i, j = 1,  . . . , n; n = 2 or 3); Y is a given subset 
of the set of bounded smoothf surfaces in Rn; Qs is the bounded open set of Rn 

$ S ,  I? E A2, h ,  g E C2, &(I?), and S ,  I? and g must be such that (gl I', 018) can be extended 
into a solenoidal field in R s  and that there exist cut-off functions [(z, 6) near (8, I?). (See 
Ladyzhenskaya 1963.) 

t - VU. w + U .  vwi = ulj au,laxi - uj aw,lax,. 
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FIGURE 1. A possible design for the study of the drag on S. The fluid inside C is maintained 
in motion by the pump C (a rotating cylinder for example). S is very small compared 
with C so that the motion is almost uniform far from S. In this case, r = C u C ,  z = 0 
on C, z = w x x, a t  x E C ,  where w is the angular velocity of C. 

with boundary an, = S ur; u = (ul, ..., u,) is the solution (in the sense of 
theorem 5.2.4 in Ladyzhenskaya 19G3) of the steady Navier-Stokes equations in 

Q,; and g is a given smooth velocity profile on I? with zero flux g . d r  = 0 . 
It is shown in Ladyzhenskaya, under fairly general assumptions on S ,  I’ and g, 
that the differential system above has a t  least one solution ( u , p )  with u almost 
everywhere twice differentiable in R,. Furthermore, it was shown by Finn (1959 ; 
see also Heywood 1970) that if v is not too small, or if the domain R, is such 
that 

where 

the solution to the steady Navier-Stokes equations is unique. Therefore, for 
those cases, problem (2.1) is well posed. 

The objective function in (2.1) is the rate of energy dissipated in the fluid; 
as we pointed out in the previous paper (Pironneau 1973), if r and g are as in 
figure 1, and if the surfaces S of Y are ‘centrally located’ and small in I?, the 
solution of (2.1) will be the element of SP with smallest drag. The introduction of 
I? and g is only an artifice to avoid an unbounded domain, and the convergence 
of the integral to be considered. 

It is theoretically possible to study (2.1) when u is described by the full (time- 
dependent) Navier-Stokes equations. I n  fact, results very similar to those in this 
paper can probably be obtained. However, since this paper is the mathematical 
background for a numerical solution of the problem, and since numerical solution 
of unsteady flows is extremely difficult, we shall restrict our attention to the 

(s, ) 

v > ntD,IIVu/l, (2.2) 

Dn = SUP {I lu I lL%?d I IVU 1 IEW) I u, vu E L2( Q)>, 
U 

7-2 
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100 0. Pironneau 

steady cases. In  practice this implies that our bodies S must be such that the 
boundary layer does not separate. 

By choosing 9 properly, we investigate the following four problems. 

Problem 1. 9, = (XI volume enclosed by S = 1): minimum-drag body of 

Problem 2 . 9 ,  = (Sl surface area of S = I}: minimum-drag body of given sur- 

Problem 3 . 9 ,  = (81 D c interior of S}: minimum-drag body which contains 

given volume. 

face area. 

a given object D. 
6 

Problem 4. 9, = {S ~9~1 (2a -PI) J .  d s  = d} :  minimum-drag body of the Js 
above kind (i = 1 , 2 ,  or 3) of given lift d in the direction J. 

3. Results 

is a surface in 9 ‘close’ to S and parameterized by s,  i.e. 
THEOREM 1. If S E ~  is parameterized by s, i.e. S = { g ( s ) l s ~  [0, lIn--l}, and S‘ 

S‘ = (E‘( s )  IF’@) = 5(s) + 4s)  4 s ) ;  s E [O, lIn--l}, 

where n(s) is the normal to S a t  s ,  then the change 6E in energy dissipation 

due to the difference between S‘ and S is 

Here w ,  together with q, is the solution of 

v V ~ W - V U . W + U . V W  = - u . V u + V q ;  V.w = 0 in QS;f wIg = wlr = 0 (3.2) 

lim A-l o(Aa( )) = 0. 

The proof of theorem 1 is lengthy, hence we defer it until the end of the paper. 
We obtain the following corollaries. 

and o(a( )) is defined by 

A-0 

COROLLARY 1. The solution S to problem 1 must be such that 

= constant almost everywhere on S. (3.3) 

COROLLARY 2. The solution S to problem 2 must be such that 

au aw 
R(s)  (I/ 2 111 + 2 an. a,) = constant almost everywhere on S, (3.4) 

where R(s)  is the radius of curvature of S at s. 

(1963) for u. Uniqueness is guaranteed by (2.2). 
t (w, q)  can be shown to exist by the same method as that used by Ladyzhenskaya 
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On optimum design in JEuid mechanics 101 

COROLLARY 3.t  The solution S to problem 3 must be such that 

(3.5) 
2 aw au / /  $11 + 2 an. an = 0 on parts of S which do not touch D, 

2 aw au I /  + 2 an. an 2 0 on parts of S which do touch D. 

The proofs of these corollaries are straightforward (see Pironneau 1973); it 
suffices to choose S’ as S with two small humps, one positive and one negative, 
such that 8’ €9. 

Similar results for problem 4 are more difficult to obtain; we need the following 
lemma. 

LEMMA 1.  Let d(S) = (2au-pI) J.dS. If 8‘ and S are as in theorem 1, then 

au a t  
d(8 ’ )  - d ( 8 )  = - v - -a(s)  dS+o(a( )), j a n &  (3.7) 

where vTj = &v(auJaxj + 8uj/axi), and t is the solution of 

V V 2 t - V U . t + U . V t  = VT, V . t  = 0; tJ, = J, tlr = 0. 

Proof. The correct proof is nearly as long as the proof of theorem I. We shall 
give a heuristic argument below; it can be justified in the same way as in theorem 
1. Thence, let t be an extension in Qs of J( ,  with V .  t = 0 and tlr = 0. Using 
integration by parts, it  is readily shown that 

where a& = i-v(ati/axj + atflax,). Hence 

-Ian [; f f~ ; f f~ ;+ (vV”’ -vp’ ) . t ’  1 d o ,  

where Slcz = (Q,-n~nn,)u(n,-Q,nn,). 

Let 6u = U’ - u and 6t = t’ - t. If we neglect the terms in Su . St in the first inte- 
gral, and if we replace the second integral by a surface integral (because the 
domain of integration is a narrow strip of thickness a( )), we find that 

(ff;p:j+ff:iCT:;)+ (vV26u-V6p). t + ( v V 2 u - V p ) . 6 t ]  dQ Sblr E +Is [f ff$.CT:j + (VV2”  - V p ) .  t a(s) ds + o(a).  1 
d(8’) - d ( S )  = - 

t Note that a t  zero Reynolds number S = D is the solution of problem 3, the inequality 
(3.6) being automatically satisfied (w = 0). However, this may no longer be the case at 
high Reynolds number. 
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102 0. Pironneau 

Let I be the first integral ; using (3.8) again, 

(2aU-pl)St.dSf 2dSu.dS I=ls s, 
+Io, V V 2 t .  su dQ -s,, (YV2SU - VSp) . tdQ. 

Now, Su satisfies vV2Su - u . VSu - Su . Vu - Su . VSu = VSp. Again we can show that 

Jassu. VSU. tdQ 

is of second order in a( ). Thence 

(2CsUSt + 2vtsu -pSt) .dS  + ( V V 2 t  -u. V t  + v u .  t). SudQ + (T(a), I=ls f,, 
where we have used 

(U.VSU).tdQ = - (u.Vt).SudQ. s,, 
Hence, if we choose t so that vV2t + Vu . t - u . V t  = Vr, we find that 

d(S’) -d(S)  = (2aUSt + 2dSu-pSt -7su). dS+o(a)  Js 

Now, by definition, Su I = u’ I s, and by a Taylor expansion 

u’ [ = u’I s’ - a[ au’/anl s’ + o(a), 

but u’IS = 0, by definition. Therefore 

a t  
an 

Now St.dS = -a - .dS+o(a)  = o(a), Su.dS  = o(a).  

Hence, since u . Vu I = 0 

a t  
d ( X ‘ ) - d ( S ) =  - 2  

which implies (3.7). 

COROLLARY 4. The solution X to problem 4 must be such that there exists 
a h such that 

where w and t are as in theorem 1 and lemma 1. 

Proof. - $A is the Lagrangian multiplier associated with (3.7). 
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On optimum design in Jluid mechanics 103 

4. Discussion of the results 
Knowledge of the derivative of a function f is valuable when seeking the 

minimum of the function. There are numerical methods, the so-called gradient 
methods, which generate sequences of the type {xi} (i 2 0 ) ,  where 

x<+z = xi + h i f ’ ( X i ) ,  (4.1) 

which converge to  a minimum off (x). These methods can be extended to problems 
like (2.1); the ‘derivative’ of the objective function in (2.1) is simply the quantity 
in brackets under the integral in (3.1). Therefore, if the surface S’ is obtained 
from S = {g(s)Is~[O, lIn--l}, by taking g’(s) = g(s)+a(s )m(s) ,  where 

and h > 0 is small, S’ has a smaller drag. For problem 4, CL. must be such that 
S’ ~9%. Lemma 1 tells us that - (aupn). atIan is the gradient of the constraint 
d(S)  = d ;  for physical reasons this constraint can be replaced by d ( S )  > d, and 
a method of feasible directions can then be used (see, for example, Pironneau 
& Polak 1973). 

Therefore it is reasonable to attempt a numerical study of problem (2.1). 
However, a numerical subroutine for solving the steady Navier-Stokes equa- 
tions and determining w is needed. Note that it may be possible to measure 

in a turbomachine, by measuring the change in drag due to a small hump on S. 
Indeed, from theorem I if the volume v of the hump is small and if it does not 
induce separation, the change SF in drag is 

We shall now study some cases where the determination of w is simpler. 

PROPOSITION 1. At low Reynolds number aW/% is small compared with au/an. 
Proof. Let W and U be typical values for Iw1 and [ u I  and let L be a typical 

w uw u v-+- = v- 
L2 L L2. 

length of the problem. Then from (3.2) we find that 

Hence, w/U = O(LU/v). 

PROPOSITION 2. Let c R2 and (s, n) be the tangential and normal co-ordi- 
nates close to S. At high Reynolds number and close to S ,  w is a solution of the 
boundary-layer equations 

a3ws a2ws a2ws au, aw, au, aw, a3us aw, aw, 
an3 an2 anas an an an as an3 as an 

v--t-u +- u +2--+2-- = -v-; -+- = 0) (4.4) 
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104 0. Pironneau 

with the boundary conditions 

w, = w, = 0 at n = 0, aw,/as = us = 0 at n = 00. 

Proof. When v = 0 equations (3.2) become 

Qu.w-u.VW = Vq, VW = 0; w I ~ ~ ~  == 0. (4.5) 

However the solution to (4.5) does not represent w in the neighbourhood of#. 
Following Prandtl's approach, we shall look for an equation for w different 
from (4.5) which represents w in the neighbourhood of S .  In  (3.2)' we make the 
following change of co-ordinates: 

s' = s/L, n' = nR*/L, us, = uJU,  unr = unR*/U, 
w,. = wJU,  wnr = wnR*/U, 8' = q/U2, 

where R = LU/v.  Then (3.2) becomes 

Therefore, when R + 00 we obtain 

which reduces to (4.4) after elimination of q'. The boundary conditions at  00 
derive from the fact that w = 0 is an admissible solution in the inviscid region. 

PROPOSITION 3. Around a wedge of angle 2 4  1 - m/(m + I)), or round a corne? 
ofanglen(1 -m/(rn+ 1)),[aw,,/an], = $~'3a-2g"(O),wherea = i ( m +  l),gissolution 
O f  

g(4) - 2afg(3) - 2 q g "  + 4(2a - i)yg' = -jy 
(4.9) I g(0) = g'(0) = 0, g'(0O) = g"(C0) = 0 

and where f is the solution to the Falkner-Skan equation. 

Proof. Let q5 be the stream function of w and @ be the stream function of U. 

From dimensional arguments, $ = s'af (+n's'a-l). The same dimensional analysis 
applies to q5: q5 = s'ag(ih's'a-1). Hence substituting w and u in (4.4) we obtain 

It is interesting to note that for a = 4 (flow past a flat plate) (4.9) can be inte- 
(4.9). 

grated twice so that 
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O n  optimum design in JEuid mechanics 105 

Then, matching 4 with the outer solution ( 4 4 ,  we find that g ' ( c 0 )  = 0 implies 
that 

COROLLARY. Around a wedge of angle go", 

is constant. 

Proof. For an angle of go", a = Q therefore awlan and au/an are constant. 

5. Proof of theorem 1 
Let ej = &v(auF/az, + auf/axi), where us = (uf, . . ., u:) is the solution of the 

differential system on the right-hand side of (2.1).  The change SE in dissipated 
energy is 6E = ( 2 / v )  SE', where 

Let X = (r(s)/r(s) = E(s)+n(s) z ( s ) ;  SE[O, lln--l), where z( ) is a smooth func- 
tion with 

x ( s )  2 max(a(s), o}, s E [ O ,  1ln-1. 

Then (with self-explanatory notation) 

As a function of x E R, vij( ) is continuous almost everywhere (see, for example, 
theorem 5.5.7 in Ladyzhenskaya 1963). Therefore, from the mean-value theorem 
for integrals, 

6E' = ~ Q , ( 2 ~ S v , , + 6 v i , S o i l ) d n +  [ 4 ' v ~ ~ ( z - a ) - 0 $ v ~ z ] d 2  

+o(z -a )+o (a ) .  (5.3) 
s, 

By integration by parts it is easy to show that 

2IQZ vij6vijdR = - v2 Snl s, V2u. 6 u d R  - 2v aSu. dC. (5.4) 

By making use of vV2u = u.Vu+Vp, and by integrating by parts the term 
V p  .6u (using the relation V .  u = 0) (5.4) becomes 

Now, let (wc, q) be a solution of 

w I r  = 0. vV2w~-(vuj)w~+- u* = -u.Vu+Vq, V.w" = 0;  WCl, = 0, = aw 
axj 
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106 0. Pironneau 

Then 

u+j 6aijdQ = v /  [v(V2wc) 6u - (6u. Vu) .wc + (u. Vw"). 6u - Vq. 6u] dQ 2J*, Qc 

-vj,(21~-pl)6u.dX. (5.6) 

From the definition of 6u, the first integral on the right-hand side above is equal to 

(u.Vw~).6udQ = (u.VSu).wCdQ. 1% and because 

Hence, after having integrated by parts the term which contains sp-q, we 
find from (5 .3 )  and (5.6), that 

dZ + 62E, (5.7) 

where 

S2E = v 6 u i j S u i j d Q + v  (p+q-6p)Su.dZ s 
(@;@;-- @jag.) zdZ+o(z )+o (z -a ) .  (5.8) +J, 

Later we shall prove that S2E is small compared with the other terms in (5.7). 

is legitimate because us E C2( Qs) and us E C2( Qs). We have 
We now evaluate 6u[,, as in the previous paper, by a Taylor expansion, which 

A term of the form o(z),  say, in a vector equation represents a vector whose 
modulus is o(z). Therefore, since = uSls = 0 

Hence, from (5.9), (5.7) becomes 
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On optimum design in jluid mechanics 107 

Below, we shall prove that PE' and 82&' are small compared with the rest of 6E, 
and that, when z, a --f 0 we can erase the primes and replace S' by S in (5.10). 
Then, since 

the proof will be complete. 

converges weakly to us when S' converges to S, and second because 
Roughly, S2E +cY2'E is of second order in a for two reasons: first because us 

implies that 

Now, we proceed carefully; we decompose 62E + a2'E into A + B 
c 

+ C, where 

(5.12) 

(5.13) 

The rest of P E  + S2'E, is . ,  

-van, + v2 a2wz] - + v ( p  + q-  8p) (o(z)  + o(z - a))  an 

is clearly a second-order term in ( z ,  a )  once it has been shown that hvz/an, and 
q and 8p remain bounded when S', X -+ S. 

5.1. A is  a second-order term in the sense that lirn h-l A(hx, ha) = 0 

By elementary manipulation of inequalities, it is easy to show that there exists 
a c1 > 0 with 

Hence / m a ,  hz)l 6 ~ 2 C , 1 1 ~ ~ / ~ l I ~ ~ ( * , ~ .  (5.16) 

It was shown above that h-l&u(ha) = - [aus/an],a + [o(h(z - a ) )  + o(hz)] /h  
(because [aufl/an], converges weakly to [aus/an], as shown in the appendix). 
Let a be a solenoidal vector which takes the value h-l/Su (ha) on X' and is 
0 on I?, then from the above formula (and the fact, as shown later, that 
[aus/anIs remained bounded), IlallHlcQx) is uniformly bounded when h -+ 0. 

h+O 

IA(a, 211 6 ~ l I l W ~ 1 ( ~ , ) *  (5.15)t 

Let 6f.i = h-lau. Xi is the solution of 

- ~ V 2 8 f . i + u . V ~ f . i + ~ f . i . V u + h ~ f . i . V ~ f . i  = -VSfi ,  V . 6 5  = 0; 8f.ilanX = a[,Qx. 
(5.17) 

t H1( a)  is the Sobolev space of order 1 on R. 
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108 0. Pironneau 

Let 6v = 6V- a. If (5.7) is multiplied by 6v and integrated by parts over Q,, 
it becomes 

a a sv 
v - (6v + a) .- + (u. Va) .6u + [(Sv +a) .  Vu] .6v 

.la=( axi 8% 

+A[(6v+a).Va].Gv dQ =0,  I 
where we have used the formula 

1 ( f .Vg) .gdQ = 0 for all f,g such that V . f  = 0, gl,, = 0. L 
Therefore, from the Schwartz and Poincarb inequalities? 

~Il~Vll%lC*,, 6 ll~vllH1(a,) [ V i l a  IIH'(nC) + IIU * Va + a .  vu + ha. va II 1 

[6v.V(u+ha)].6vdQZ. (5.18) 

As in Ladyzhenskaya (1963, formula (5.2.119)), we now show that (5.18) im- 
plies that  there exists a A, such that //6v/jHl(n,) is uniformly bounded for all 
h E (0, hl). Suppose that it is not true; then there exists a sequence {hi}i>O such 
that lim hi = A, and \~6v~~~Hl(az) + 00. Following the argument of Ladyzhenskaya, 

we find that (5.18) implies that 

+I*, 

i - tw 

where b is a solenoidal extension of 6ul,. Therefore if h is small enough, the above 
formula is a contradiction, and hence I16vIIH1(nC) must be bounded uniformly in A. 
Then, (5.16) implies that 

h-lIA(ha, Az) G hcllla + ~ V / I ~ ~ ( ~ ~ ) ,  

which implies the results. 

5.2. B is a second-order term in the sense that lim h-lB(ha, hz) = 0 

Since ( 8uc/an,). dC = 0 and since [aus'/anFIs and [auC/anClC converge weakly 
to [aus/an,],, the only part of B which is not obviously of second order is 

h+O 

Let a' be an extension of 
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in fix. Then if (5.17) is multiplied by a' and integrated over a,, it becomes 

B(ha,hz) = o(h)+h2v Spa'dE = o(h)+h2v a'.(vV28fi+u.VSfi 

+Sfi.vu+hSii..8~)daZ. 
s, Jm 

Since Sii is uniformly bounded, it follows that there exists a B, with 

IB(ha,hz)l 6 h2B, for all h ~ ( 0 , h ~ ) .  

5.3. C is a second-order term in the sense that lim h-lC(ha, hz) = 0 

This is an immediate consequence of the above calculation and of the fact that 
(i) 4; and [auS'/an], converge weakly to crij and [aus/an], and (ii) /lawc/anll,r(,, 
is uniformly bounded when E -+ S.  

h+O 

6. Conclusions 
We have obtained a certain amount of information about the disturbance in 

the fluid owing to a hump on the surface of a body. It would be interesting to 
connect these results with those obtained by Smith (1973). Our results are valid 
as long as the steady Navier-Stokes equations have a unique solution, that is, 
in practice, when the boundary layer does not separate. For other cases it is 
necessary to study the unsteady case. We have in fact assumed that the opti- 
mum profiles exist and are smooth. It now remains to solve the equations, a task 
that is not likely to be straightforward. 

I wish to thank particularly Professor Sir James Lighthill, Professor K. 
Stewartson and Dr P. Jackson for their most helpful suggestions. 

Appendix. [aus'/an], converges weakly to [auS/an], when s' converges to S 
More precisely, we want to show that 

. dZ = 0 for all q4 which are restrictions of functions of 
aus' aus 

C-+S CYfi,). (All  

The mapping A :  us -+ [auS/&,], is continuous from L2(Q,) into H-*(E). There- 
fore, since 

(q4, a(@' - uS)/an),a(,, = (us - us, A*q4)L~(n,), (As) 

to prove (A 1)  it suffices to  show that us' converges weakly to us in L2(Qz). 

exist c, a and f i 8  such that 
(a )  US' i s  uniformly bounded. It is shown in Ladyzhenskaya (1963) that there 

where a' is a solenoidal extension of us' Janst; a8 is a strip of width S around S' 
and r such that a = 0 outside 0,. Since us'Is' = 0, is a strip along r only and 
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the right-hand side of (A 3) does not depend upon S'. Therefore if fiS' is the exten- 
sion by zero of us' inside S', 

llfis'llHl(n, zlla'llH1(a8) ( 1  +c/la'/l) 
for all S' close to S.  

(b)  Let vs be a weak limit of W-a' (it exists since fis' isuniformly bounded); 
let vs' = us' - a'. If us' does not converge to us, then there exists a B > 0 such that ,for 
q 5 ~ H l ( Q ~ ) ,  with V . +  = 0 and +Ian, = 0, 

Ins (gg- V2a'. + dQ + ((vs. Va' +a'. Vvs. + + (vs. Vvs). +) dQI 3 B .  1 s,, 
Let B and + be the extensions of v and + by zero inside S. From the weak con- 
vergence of vs' to vs 

Let dS' be a sequence of elements of H1(Q)  with V .  +s = 0, +S'Ians. = 0 which 
converge strongly to +; then 

which contradicts the fact that TS+a is a solution of the Navier-Stokes 
equation in Qs. 
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