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Summary. The Dirichlet problem for second order differential equations is chosen 
as a model problem to show how the finite element method may be implemented to 
avoid difficulty in fulfilling essential (stable) boundary' conditions. The implementation 
is based on the application of Lagrangian multiplier. The rate of convergence is proved. 

1. Introduction 

The finite element method has become the most successfull approximation 
method in engineering. There is a variety of detailed approaches based on the 
finite element method. See e.g. [22 and 17] many others. The central idea of the 
finite element method is to use different variational principles together with a 
Galerkin procedure applied to picewise smooth functions. 

The notion of a variational method is used today in engineering most ly  in the 
narrow sense that  the solution is a stationary point. In other words, the bilinear 
form which determines the stationarity is often not positive definite. For varia- 
tional principles used in the theory of elasticity, see e.g. [25]. 

The finite element method has been studied recently from a theoretical point 
of view also. Many theorems about convergence, error estimates, etc., have been 
proved. See e.g. [5, 6, 8, 9, t2, t4, 16, 26]. 

I t  has been shown that  it is not computationally easy to handle the Dirichlet 
(essential) boundary condition if the variational principle requires fuUfillment 
of these conditions. Different methods have been developed to avoid this difficulty. 
See e.g. [3, t0, 14, 18] and others. There is an obvious and classical technique to 
deal with restrictions in the variational principles. I t  is the theory of Lagrangian 
multipliers, applied to the finite element method. Nevertheless application of this 
idea to the finite element method has not been so far theoretically studied. 

We shall analyze here a model problem, but the approach is quite general and 
may  be applied in other cases too. Some interesting cases will be brought out in 
subsequent papers. Let our problem be to solve the differential equation 

-- / lu+u=/ on 9 (t . t)  

with boundary conditions 
u = g  on ~9". (1.2) 
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We shall assume t h a t / 2  is a bounded domain and that  its boundary/2" is suffi- 
ciently smooth. 

The classical technique is to minimize the quadratic functional 

: oo, -2fivax (t.3) 

over all functions satisfying the prescribed boundary condition on/2". By  the 
theory of Lagrange multiplier (see e.g. [t9]) the solution creates the stationary 
point for the (not positive definite) functional 

=/[2(0.) . ,] / e(v,,~) ~ +v d x - -  2 ,~(v--g)ds--2 v]dx. (1.4) 
~" T2 

In the next chapters we will use this principle and show how to use it in the 
theory of the finite element method. We shall also show that  the rate of conver- 
gence of this method is the optimal one. 

2. The Principle Notions 

Throughout the entire paper R,  be the n-dimensional Euclidian space, 

�9 - -  . . . . .  ~,), II*l]'- ~,~ and dx = d x  x dx,. L e t / 2 (  R,  be a bounded region 
/=1 

and/2" its boundary. We will assume that/2" is infinitely many  times different/able. 

Let L,  (/2) be the space of square integrable functions u on/2 such that  

l[ul~.,(a)---- f [u]~dx <oo. 

Some times we shall write L2(/2 ) = H ~  (g'2). Let g(D) be the space of all infinitely 
many  times different/able functions on /2 and such that  all derivatives are 
continuously extenable on /2", analogously d~(s ") is the space of all infinitely 
many  times different/able functions on/2". Furthermore let ~ (I]) < g (/2) be the 
subspace of all functions with compact support in g2. 

Let l ~  t ,  l integral�9 The Sobolev space HZ(/2) (resp. H~(/2)) will be the 
closure of g(/2) (resp. ~ ( ~ ) )  in the norm l[" {~*(a) where 

o~l~l_~Z 
and 

c ~ +  "'" +o~ 
. . . . .  

�9 " �9 i = 1  

Now let ~oi(x ) >0, i = t ,  2 . . . . .  v, xER n be functions infinitely times differ- 
entiable and such that  

~,~p~(x)=t for xE/2". 
i = 1  

Further let there be a system of local coordinates x! s], i - -  t . . . . .  n s = t . . . . .  
and n - -  1 dimensional domains J ,  ( R=_ 1, and a system of functions ~,, s = t . . . . .  
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defined on J ,  which are infinitely t imes differentiable, and which create one to 
one mappings  Z, of J~ onto Z, (J,) ---~; where 

and  such tha t  

pola ted spaces 
norm. See e.g. 
define 

E [x e Q ' ]~ ,  (x) > o] c E [(x[ ~ . . . . .  x f _ .  ~ (x[ ~3 . . . . .  x ~ , )  [ (xtz ~ . . . . .  x~l_l) E ( J , ) . ]  

where H > 0 and 
(J,)~, = E  [xEJ~ld(x, J',) > H] 

with d (x, J ; )  as the distance of x to J ; .  it is easy to see t ha t  such a sys tem of 
functions ~i, 9,  and domains J ,  actual ly exist. Let  / be defined on ~2". Then the  
function Is = ~ J  = 0 everywhere  outside of ~ ;  and  ]~(Z~ (x)) is defined on J ,  and  
has compac t  support .  

Le t  us introduce the Sobolev spaces on/2".  Let  l >-- 0 an integer. The SoboIev 
space H'(/2") with norm [[" Jim(a) is the space of all functions / defined on Q" and 
such tha t  

We have  introduced the Sobolev spaces with integral  derivatives.  For  ~ with 
~2" EC ~176 we m a y  construct  Hi lber t  scales and obtain spaces with fractional  deriv- 
atives. See e.g. [20 and 2t] .  Our notat ion is in agreement  with [2t]. These inter-  

(resp., their  norms) are equivalent  with Aronszajn-Slobodeckii  
[23]. For  0 < 0 ~ = [ ~ ] + a ,  0 < a < t  and [~] integral  we m a y  

where 

=lbllL( )+ Y IID  tla c ) (2.t) 
I k l  = [~] 

Analogously we define the norm 11. I[n-ca') which is equivalent  with the  in terpolated 
norm. For  ~ negat ive we shall define the space H~(Q ") as a dual space, namely  
H~(Q -) = ( H - ~ ( Q ' ) )  1. For  addit ional information see [2t] p. 35. 

Le t  us ment ion some theorems which will be useful later. 

Theorem 2.1. Le t /EHk( [2 ) ,  k>{;. Then there exists a trace of the function 
t on Q" and 

II1 -<- c Iltlb ( ) (2.3) 

where C does not  depend on 1. - 

Theorem 2.2. Let  teHk(/2) ,  k > ] .  Then  there exists a t race 0f/am an Q" and 

< Cllllb,(,,, (2.4) 

where C does not  depend o n / .  For  the  proof see [2i] p. 47. 

t C will be a generic constant with different values on different places. 

13" 
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The theorems hold only for k > ~ (resp. k > ~) and it is possible to show that  
the theorem is not valid for k ~ ~ (resp. k ~ ~). See e.g. [2t ] p. 49. Nevertheless 
let us show tha t  the theorem is true if we restrict the space H a (Q) to a smaller one. 

Let ~(~2)C Ha (~2) be the space of M1 functions which satisfy the equation 

- - A u + u = O  

in the weak sense; i.e., 5p (f2) be such a subspace of functions u that  

i=10x~ Ox i +uv  dx=O 

for every vCH~(Q). Now we may  prove the next  theorem. 

Theorem 2.3. Let uESt'(g2). Then we have Ou]OncH-~(Q') and 

--~c~, ~Cllul~,c~ (2.5) 
where C does not depend on u. 

Proof. Because 5 ~ ( ~ ) ~ 8 ( ~ )  is dense in SP(Q) (see e.g. [t]) we have to prove 
the for any vEH�89 and ue6a(Q)~(O)  we have 

~ ~d~ z cC.)ll'l~'c~-, (2.6) 
O" it* 

with 

c (u) z c II u I~co~. 
By an inverse imbedding theorem (see e.g. [2t]) there exists a linear mapping 

of n~(I2") in to  Ha(O) such that  # ( u ) = u  on O" and II~(-)t~,~---Cll-l~*c~.~ 
where C does not depend on u. For u E 6 P ( O ) ~ ' ( O )  and vE#(~2") we compute 

Integrating by  parts we obtain 

(u, v) = ~ ou 
B vds 

I'I" 

and we have obviously 

I B (u, v) I __ I1" t1., c,~ I1~, (,,)I1., <o~ < c II u I1., ~,~ I1,, I1.* c,,~. 

Therefore we have 

IN(u, v) l= ~ -  ~d~ <Cllull.,c,,~llvll.~c,~. ~ 

and this in fact proves our theorem. 

Let  us mention now some theorems about the Dirichlet and Neumann problems. 

Theorem 2.4. Let / E H  h (Q), k ~ 0, g e H  ~ (Q'), l > ~. Then there exists in Ha (~) 
exactly one function u such that  u is a weak solution of the equation - - A  u + u = ~  
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with boundary  condition u = g  on Q ' .  Furthermore u EH s ($2) where s = min (k + 2, 
l + ~ )  and 

II u II-,c~ --< c Ell! l l ~  + IIg I~,,~.~] (2.8) 

where C does not  depend on / or g. 

Theorem 2.5. Let  !~H~($2), k > 0 ,  gEHt($2"), l ~ - - ~ - .  Then there exists in 
H1($2) exact ly function u such tha t  u is a weak solution of the equation 
--A u + u  = !  with boundary  condition Ou/an =g. Furthermore  u EH~($2) where 

s = rain (k + 2, l + ~) 
and 

II-II,,c~ =< c EIIIII-,:~ + Ilgll-,~'~] (2.9) 

where C does not  depend on ! or g. 

For  the proof of these theorems see [21], p. 203. 
We proved Theorem 2.3 for u E 6 ~ ($2) but  it is possible to generalize it. 
Now let/EL~($2) and let 5:($2, !) be the space of all functions which satisfy 

the equat ion 
- - A u + u = !  

in the weak sense i.e. let S:($2) be such a subspace of function uEHI(J2) tha t  

t=l axi axi +uv dx=  !vdx 

for every v EHo 1 ($2). Now the following theorem is valid. 

Theorem 2.6. Let  uESt'($2,/). Then we have Ou/anEH-t($2) and 

[ ~ - -h~ ' ,  --< c [11'~ IIn,~, + II!ll~.-~] (2.1o) 

where C does not depend on u or 1. 

Proo]. Let uESP($2, 1). Then there exists a linear mapping Z of La(I2 ) into 
H ~ ($2) such that  u = v + w where 

and 

v~.~($2), II"l!,-,,c,~--<cEIlull.,~,~ +11/11~,,~3. 
In  fact  w is a part icular solution of the equation - - A w + w = /  such tha t  
ll~lG, c~-<-Cll!lLc~ and we may-obviously use for our purpose Theorem 2.4. 
Combining now Theorem 2.3 with Theorem 2.2, we get our result. 

Theorem 2.7. Let  gEH-i(Q ") and u be the weak solution of the Neumann  
problem for the equation - -Au+u=O on $2, Ou/On=g on $2" in /-an(Q) [see 
Theorem 2.5]. There exists constants  0 < C 1 < C~ < o o  such tha t  

C 1 #guds < Ilgll~-h,~ < G  ~ guds (2AQ 
.Q. ~ -  
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a n d  

Proo]. The statement (2.12) follows immediately from the definition of a weak 
solution. For gEH~ ") we have 

[Igl~-h~.)= sup ~gvds (2 . t3)  

Let w be the solution of the equation --A w + w : - 0  with w = v  on s Using 
Theorem 2.4 and 2.5 and the definition of the weak solution, we have 

[~ gvds < C IIwl~-I~)llul~,c~l 
Ilvlluo.) - IIw IIn,.c.~ (2.t4) 

< c I1,'11~,,~, = c  [~ g ,ds] ' .  

Therefore, we have 

Ilgll~,-~c~ < c ~ g ,as .  ~,  

Because of the density of H~ ") in H-~(Q') ,  one side of (2.4t) is proved. 

Let us prove now the other side of the enequality (2.tl). We have 

g , a s  < Ilgll~-Jc~',ll"l~o'~ 

by definition of the norm [[gI~-tr Using Theorem 2.5 we get 

12 g,,ds ~- Cllgll~-~,~., 
We in fact show that  

c1 ~ g,,ds ____llgll~,-~r ~ g~as (2.t5) 

instead of (2.1t). But using (2.12) we see that  ~ g u d s ~ O  and therefore (2.t5) is 
identical to (2.1 t). a" 

Let us introduce now two theorems which will play a fundamental role in the 
next section. 

Theorem 2.8. Let H 1 and H ,  be two Hilbert spaces with scalar products 
(., �9 ) h a n d  (., �9 )n, resp. Further let B(u, v) be a bilinear form on H I • H,, uE H 1, 
v EH~ such tha t  

[B (u, v ) [ ~  Cl[]u[~,[[v[In ,, (2.t6) 

sup ]B (u, v) i ~ C, ][ v i~,, (2.t 7) 
u~Ht 

II-l[Ht <l 

sup Ia(~, v)l_>-GIl~l~,, (2.t8) 
vcHs 

IlVlIH <x 
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with C~ > 0, Ca > 0, C ~ < ~ .  Further le t /~H~ i.e., let / be a linear functional on H~. 
Then there exists exactly one element uo~H x such that  

for all v ~H~ and 

For the proof see ~9]. 

B (%, v) =[(v) (2A9) 

I1%11-, ~ Illll~; (2.20) - -  C ~  " 

Theorem 2.9. Let the assumptions of the Theorem 2.8 be fulfilled. Further 
let there be given two linear subspaces (closed) M 1 ( H  1 and M 2 (H~ and for 
every v EMg, let 

sup [B(u, v)] >=d~(Mx, M~)IIvIG, (2.2t) 
u E M  t 

Ilulln ---x 

with d~(M1, M~) > 0, and for every u E M  1 

sup IB (u, v) l_-->d~(~, M.)II-II., (2.22) 
v E M t  

IMIn, <1 

with da(M a, M2)>O. Let /EH~ be given, and let u o denote the element of H 1, 
such that  

B (%, ~) = t  (~) (2.23) 

holds for all v 6H~ [such an element exists and is unique by Theorem 2.8]. 

Let there exist a o~6M~ such that  

Further, let */0 EM1 be such that 

for all vEM2. Then, 

For the proof see [9]. 

I1%-o&~ ~ o .  (2.24) 

B (G, v) = 1 (v) 

C1 

(2.25) 

(2.26) 

3. The Finite Element Method - -  Rate of Convergence in/xn (fJ) 

Before we discuss the finite element method, we shall introduce some necessary 
machinery. Let us introduce 5r and 5P~,~(Q ") as one parameter families of 
functions for all 0 < h < t.  The linear, finite dimensional system of functions 
S~,k(Q) [resp. 6~;~(sQ')] will be called a (t, k)-regular system for t ~ k  >--0 (resp. 
t ~ k > - - ~ )  if: 

(1) ,9~h,*(Q)CHI'(g2) [resp. 5a~,*(~2")CHk(Q')], 

(2) if/EHz(O) Eresp./EH'(O')] 

then there exists g E SP~ ,~ (~) [resp. g E Sp~,k (~.)] such that for any 0 < s < k < l 
[resp. --�89 ~ k  < l ]  
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where 
# = m i n  ( l  - -  s ,  t - -  s )  

and C does not depend on s, h o r / .  

The system 5#~,k (/2 ") will be called strongly (t, k) regular if it is (t, k)-regular 
and if for every g E 5#~, ~, -- ~ ~ q ~ s --< k 

Ilg II-,c~', ~ Ch-C,-,, LIg I]-,c~'~ 
and C does not depend on s, h or ]. 

We have studied the construction of the systems 5#~,k (Q), in [4] and [ t t ]  
and 5#~,* (/2.) in [1t]. Similarily, since we have introduced the norms HS(/2 ") by 
transformation to the case of n - - t  dimensional domains, we may construct 
strongly (t, k)-regular system 5:~,*(/2 ") using principally the results of [4]. Let 
us remark that  we do not introduce the strongly regular systems ~ , k  (Q). These 
systems are much more difficult to construct (see [7]). Let us mention that  these 
spaces are finite dimensional. 

Now we may explain the finite element method for solving the Dirichlet 
problem 

- - A u + u = [  on /2, (3.2) 

u = g  on Q" (3-3) 

with ] ELz (/2) and g EH�89 (/2"). Based on the form (t .4) we may introduce a bilinear 
form 

~=1 ex~ e x  i + u v  d x - -  ( 4 v + u # ) d s  (3.4) 
D" 

and two functionals 
F(u, 4) = f /udx,  (3.5) 

.O 

G (u, 4) =- -  ~ g 4ds. (3.6) 

Then the stationary point (%, 40) of (1.4) is obviously such that for every (v, la), 
we have 

B(uo, ~o; v, ~) = F  (v, ~,) + G  (v, ~). (3.7) 

Let us define precisely the domain of definition of the bilinear form (3.4). 
Let  us have H=Ht=H,=HI( /2) •189 with the norm [[u, 
+ll21~n-i{a.) and let us show that  the bflinear form (3-4) is defined on g • H and 
fulfills the conditions (2.t5), (2A7) and (2.t8) in Theorem 2.8. Let us study first 
the condition (2.t6). Using the imbedding Theorem 2.t, we have 

]S(u,.t.; V, lU)]<IiUi~,,,O, iiOiiH,,o, WC[n~i~,-~<o.,iiVi~,,O,+iI,,i~,-,<O.)iiUI~,O,] 
and therefore we get 

I B (u, ~.; v, ~,)1 < c I1 (,,, ,~)II. 11,,, ~ II. (3.8) 
and therefore (2.t6) is proved. Because of symmetry by proving (2.t8) we will 
prove (2.t7) too. 
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So let (u, 3~)6H be given. Denote  b y  weHI(~Q) the  solution of the  Neumann  
problem for the differential equat ion - -A w + w = 0 with the boundary  condition 
~w/~n = 2 .  Using Theorem 2.5, the function w E/-P (Q) exists and for all v 6 / P  (~Q) 
we have  

i=1 axi axi + vw dx=  2yds. (3.9) 
D" 

Fur the rmore  we know tha t  

Using Theorem 2.7, we have 

cdl211,t-~,~.~ < ~ ~2d~ 0 . t l )  

and 0 < C1. Let  us take  v = u -  w and/z  = -  2 ~. Then obviously,  

II(,,,,,,) II,-, < Cll(u, 2)I~. c~.~2) 
Let  us show now tha t  

B (,,, 2;,,, if)->_ c IJ(,.,, 2)I1~-. (3.~3) 

If  (3.13) holds them using (3.t2), we get (2.t8). So we have 

\ axi] 

.if 1 - -  i = ~  Ox Ox +~w dx ( 3 . t 4 )  

- -~ (~u+u t z )ds+  ~2wds.  
yj .  ~ "  

Using (3-9), we get 

a (,,, 2; , , , , )= Ilu II~,<,,,- .* u(22 +,=)as + ,~ 2wd~. (3.~ s) 
l'a" ag" 

Because 2 ~ +ff  = 0, we obtain (3. t3) f rom (3. t ! ). Therefore we proved the following 
theorem. 

Theorem 3.1. Le t  H=Hx=H2=H~(~)xH-�89 Then the bilinear form 
(3.4) satisfies the  assumptions of Theorem 2.8. 

Now let ] EL, (s and g E Hi  (Q.). Then obviously the functionals (3.5) and (3-6) 
are continuous. Using Theorem 2.8, we m a y  find (Uo, A0) EH such tha t  (3.7) holds 
for every  (v, if)EH. Let  us invest igate the connection between these functions 
and our original problem (3.2)-(3.3). Le t  us s ta te  it as a theorem. 

Theorem 3.2. Le t  IEL~([2), gEH�89 and let (u 0, 20)EH be such t ha t  (3.7) 
holds for all (v, if) EH. Fur ther  let w E /P  (Q) be the weak solution of the Dirichlet 
problem (3.2), (3.3). Then  u o - - w  and 20 =8w/Sn. 

Proo/. First  let us state t ha t  there exists a solution of the Diriehlet problem 
(3.2) and (3.3) b y  Theorem 2.4. Fur ther ,  it is obvious t ha t  wE~ga(O, t) and  
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therefore aw/an ell- �89 (f2") by  Theorem 2.6. Let  us show now that 

( W ,  ~ w  ~ 
B 

Because of Theorem 2.5, the function w is the solution of the Neumann 
problem for the differential equation - - A u  + u  = ]  and boundary condition 
Oulan = awlan. Therefore 

] s ~=l exi axi +wv dx=  v ~ d s +  lvdx. 

Thus we have 

-~ ,v , l~)= d s - - #  aw - ~  -T~ v d s 
.s F~ " 

f f /vd. 
which is what we wanted to be proved. 

To use out bilinear for the finite dement  approach, let us introduce a subspace 
M ( H  so that  

x @,",(o.) 
where S~h;'k,(~2) is (t a, ka)-regular system and S~:,*,,(O') is a strongly (t,, k,)- 
regular system. In addition, let M----3/1 = M  z. Further let us assume that  
k I & t,  k 2 & {- and furthermore that  

h~>Kha K > o  (3.16) 

where K is independent of ha and ~11 be determined later. Now we may use 
Theorem 2.9 which yields the finite element method with Langrage multipliers. 
We shall seek (uo, ~0)EM such that  (3.7) is fulfilled for every (v, #)EM. This 
condition gives a finite number of linear conditions for the element (5o, ~0) which 
is determined by a finite number of parameters. We shall show that  the system 
of linear algebraic equations which we have to solve has, under certain assumptions, 
exactly one solution. Thus will determine the approximate solution. 

Let  us prove 

Theorem 3.3. For K sufficiently large (see (3A6)) we have in the Theorem 2.9 
dz (21//1, M2) = d8 (3/1, Mz) > C > 0 and C does not depend on h a. 

Proo/. The proof will be similar to the proof of Theorem 3.t. Let (u, 2)EM 
be given. Denote by we[-la(O) the solution of the Neumann problem for the 
differential equation - - A w + w = 0  and the boundary condition Ow/On=2. 
Because 2ed~h;,k,(O ") and because the subspace S~h;,k,(O) is strongly regular, 
we have 

C 
< (3.17) 
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Using Theorem 2.5, we have 
CC~ 

where C 1 is the constant  in (2.9). Using the fact tha t  S~h~,~,(12) is (ta, ka)-regular 
we may  find ZE6ah~,k~(~2) such tha t  

(3.t9) 
_ c c, c~ ~, I1~11~-~.~. 

We know tha t  
wads  >= c~IIaU~,-~r ~. (3,20) 

D "  

Therefore 

where 

~ zZds = ~wZds + ~,~(z--u~)ds 
t2" .,q" .f2" 

o < ~  < inan~-~,~,llz- wl~,,~., 

Therefore we have 

D "  

Taking K sufficiently large we may  obtain 

C~--CC~C,C, > Cs > C o > 0  
K -~- 2 

and hence 

O" 

Let  us take now 

(3.21) 

(3.22) 

(3.23) 

with h = max (h a, h2). 

/~ ----- rain It1 - -  t ,  k + t,  tn W ~-] 

if, = min [t~ - -  T, 1 - -  ~-, t, + ~-] 

0.25) 

(3.26) 

where 

v = u - - z  and / * = - - 2 2 .  

Obviously (v, if) EM and the rest of the proof is simple repetition of the remainder  
of the proof of the Theorem 3.t .  

The convergence of the proposed method follows now almost immediately 
from Theorem 2.9 and the basic properties of (t, k)-regular systems 

Theorem 3.4. Let  [EH k (12), k >= O, g EH t (12"), 1 ~-~- and let u o be the solution 
of the Dirichlet problem due to Theorem 2.4. Further ,  let ~7 o (ha, h2) and ~o (ha, h2) 
be the approximate  solution of the finite element method  with Lagrange multiplier 
(with k 1 >__ t,  ks ~ - )  and K in (3.16) be sufficiently large tha t  Theorem 3.3 holds. 
Then 

ago ] 
II,~o(m, h,~) -,,o11,,.(,~, + L(n,,  n,) - - ~ -  ,m,(o.~ (3.24) 

_ c [h.. II1 I~.co) + n.. llg I1~, (o.~] 
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Proo/. Using Theorem 2.9 we have to show the existence of ~ = (~, 2)E M a 
such that  

Iluo - ~  I~, (,~) < c o  
and 

c~uo 
~ - 2  n-~r =<CQ 

where 

Q = c Eh", Ill I1,,~(,~ + h., Ilg II,,,(,~')]- 
But this follows immediately from Theorem 2.4, Theorem 2.2 and the basic 
property of the regularity of the systems 5~h~'k'(/2) and ~t,,k, h, (/2). 

4. The Rate of Convergence in the Space J5~ (f]) 

On the previous section we established the rate of convergence in the space 
Ha(Q) of the approximate solution ~20(ha, h2) obtained by the finite element 
method with Lagrange multiplier. In this section we will be interested in the error 
estimate in the space L~ (/2). We shall use--with minor modification--the usual 
technique in obtaining estimates of this kind. 

Let us denote e = u0 (ha, h2) -- Uo and ~? = ~o (ha, h2) -- ~uo/a n. By Theorem 3.4 
we know that  

where Q is given by (3.24). Therefore also I]el[c.(a)=<Q. 

Let V be the solution of the Dirichlet problem for tlte differential equation 
--A V +  V =  e with homogeneous boundary condition V=: 0 on/2". Using Theo- 
rem 2.4 and 2.2 we have 

II Vl~.c~) = cQ, (,.1) 

~n-n n�89 <=CQ, (4.2) 

and for every (v,/~) EH we have 

B(V,-o~-,v,eV" a)=f,vax. 
I1 

On the other hand, we have (e, ~7) EH and therefore 

B ( V ,  ~,ag" e, ~) = I1'11~,(~,. (4.3) 
But, 

B (w, e ; e, 7) = 0 (4.4) 

for every (w, 0) EM because of the definition of u (ha, h~) and 2 (ha, h2). I t  follows 
from (4A), (4.2) and the regularity property that there exists (z, ~) EM such that 

v; ~ - r  -<_ Ch"ll~lL(~, (4.5) 
where 

/~ = m i n  It a --  i ,  1, t, +}J .  (4.6) 
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Because of (4.4), we have using (4.3) 

IleI~,I~)=B(V__ OV ,~V 

But  using (4.t) and  (4.2) and  (4.5), we obta in  

11 e U*L,(., < C h u [I e[[a, O. (4.7) 
Therefore 

[[ e]]~,(~) ~ C [h',+u [[1[[..(~) + h~.+" [tglt~,(a )] (4.8) 

w h e r e / t l  is given b y  (3.25),/zs b y  (3.26) a n d / z  b y  (4.6). We  have  proved  the  
following theorem.  

Theorem 4.1. Under  the  assumptions  of the  Theorem 3.4, (4.8) holds wi th  

-:- (~/~ - -  r (ha, h i ) ) .  
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