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In  this paper, we obtain the first-order necessary optimality conditions of an 
optimal control problem for a distributed parameter system with geometric 
control, namely, the minimum-drag problem in Stokes flow (flow at a very 
low Reynolds number). We find that the unit-volume body with smallest drag 
must be such that the magnitude of the normal derivative of the velocity of the 
fluid is constant on the boundary of the body. In a three-dimensional uniform 
flow, this condition implies that the body with minimum drag has the shape of 
a pointed body similar in general shape to a prolate spheroid but with some dif- 
ferences including conical front and rear ends of angle 120”. 

1. Introduction 
Despite the simplicity of the partial differential equations that describe the 

motion of a viscous fluid at zero Reynolds number, it has not been possible, so 
far, to discover the shape of the body of given volume which produces minimum 
drag when moving slowly through a viscous fluid at constant speed. Among other 
attempts at solving the problem, we recall the works of Watson (1971) and 
Tuck (1968). By merging the variational maximum principle for the Stokes 
equations and a numerical minimization procedure, Watson obtained an 
algorithm which selects the best shape out of a given family of surfaces depending 
on a finite number of parameters. Unfortunately, Watson did not try it on surfaces 
with sharp ends. By assuming that the stream function for an arbitrary axisym- 
metric body can be expressed in terms of point sources and ‘Stokeslets’, Tuck 
derived a pair of nonlinear integral equations which characterize the optimum 
shape. However, owing to their complexity, these equations remain unsolved. 

In the theory of calculus of variations, the minimum-drag probIem in Stokes 
flow is classified as an ‘optimal control problem for a distributed parameter 
system, the control being a geometric element of the system’. Lions (1972) 
obtained an existence theorem for a problem of similar nature, but, as far as 
we know, first-order necessary optimality conditions for this problem have not 
been given. Hence, part of the interest of this paper lies in its contribution to 
optimal control theory, while part is of direct fluid-mechanical interest. We 
preferred to present the results for both fields in one paper only, essentially 
because the generalization of the results to more complex optimal control 
problems is straightforward. 

The subject treated inthis paper is at  the border of two research fields; optimum 
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118 0. Pironneau 

problems in Stokes flow are indeed mathematically diflicult and because of 
this we could not avoid use of the theory of partial differential equations in weak 
form and of their Sobolev spaces. Hence, after having stated the problem in $ 2 ,  
we begin by recalling some of the properties of the weak solutions of the Stokes 
equations (see $3) .  In  5 4, we obtain the first-order necessary optimality condi- 
tions of the above optimal shape of the Stokes minimum-drag problem under 
volume constraints. These conditions are simple and lead naturally to the con- 
struction of numerical methods for solving them. This is done in § 5 but, lacking 
a numerical subroutine to integrate the Stokes equations in an unbounded 
domain, we have not programmed the algorithm derived. However, $ 5 contains 
an argument which enables us to conjecture (to a good approximation) the 
optimal shape. Lastly, in 3 6, we examine a few other minimum-drag problems 
in Stokes flow. In  particular, we give the optimality conditions for the body of 
unit surface area which has minimum drag. 

2. Statement of the problem 
Consider the optimal control problem 

I 3 aui auj 2 
min (1 - C (; + --) dL21 V2U = Vp,  V . U = 0 almost everywhere in L2; 
sE9 n2i , j=1 ax. ax , 

U(, = 0, UI, = 21, (2.1) 

where Y is a given subset of the set of almost everywhere infinitely continuously 
differentiable surfaces in R3; L2 is the open set of R3 with boundary an = r u X; 
U = (ul, u2, u3) is a weak solution (see next section) of the partial differential 
equations above (the Stokes equations with viscosity one); and z is a given 
function in Hk( r) .t 

In particular, if 9’ is the set of boundaries of bodies with unit volume, and I’ 
and z are as in figure I,  for large !2 (and S centrally located), problem (2.1) 
approaches the Stokes minimum-drag problem. Indeed, the partial differential 
equations in (2.1) describe the motion of a viscous fluid with speed U(x) and 
pressure p(x) a t  x E Q, in the (stationary) Stokes approximation (low Reynodsl 
number); and the cost in (2.1) is the rate of energy & dissipated by the fluid, which 
in our case is related to the magnitude of the drag force F on S, by the formula 

& = Uo F +higher order terms in d +terms independent of S ,  ( 2 . 2 )  

where Uo is the magnitude of the (uniform) speed in the fluid far from S, d is the 
ratio of the volume enclosed by X to that enclosed by Q, when S is ‘ centrally ’ 
located in 0. 

Since (2.1) is an optimal control problem almost in the form studied by Lions 
(1968), we shall use some of the standard techniques of the field. Therefore we 
shall begin by recalling some properties of the partial differential equations in 
weak form. 

t H m ( r )  is the Sobolev space of order m on r (see Lions 1968, p. 39). It suffices here to 
know that the speed distribution z in figure 1 belongs t o  H*(l?). 
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FIGURE 1. A possible design for the study of the drag on 8. The fluid inside C is maintained 
at slow motion by the pump C (a rotating cylinder for example). X is very small compared 
with C so that the motion is almost uniform far from S. In this case, r = Z u C,  z = 0 
on C, z = w x x, a t  x E G, where w is the angular velocity of G. 

3. The Stokes equations in weak form 

Q into Rn. Suppose that U E C$(R) and p E C$( 0) are such that 
Let CE( Q) be the space of m times continuously differentiable functions from 

V2U = Vp, V . U = 0 everywhere in R. (3 .1)  

Then, by multiplying (3.1) by q5 ED~(Q) ,  where 

and by integrating by parts, one obtains 

p J . V Z # d R  = 0. 

Conversely, if U satisfies (3.3) for all #ED~(Q)  and 

(3.3) 

U.+dI'=IPz.c,bdr forall +€C;(I'uX) with +.dS = 0, 
r u s  

(3.4) 

then U satisfies (3.1) almost everywhere V2U exists, and is said to  be the weak 
solution of 
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120 0. Pironneau 

Let Z be an extension in Hg(S2)t of z such that V .Z = 0 in i2 (there exist such 
extensions; see Ladyzhenskaya 1963) and let V be a solution of the variational 
equation 

It is easy to show that (3.6) has a unique solution V in Hg(i2) (see theorem I. 1.2 
in Lions 1968) with Vlan = 0 and V.V = 0. Hence V + L  is the unique weak 
solution, in Hg(Q), of (3.5). 

4. Optimality conditions for problem (2.1) 
Problem (2.1) is a problem of optimal control of a system governed by a linear 

elliptic partial differential equation and with quadratic cost, but the control is 
a geometric element of the system. Therefore, we must face two difficulties. 

(i) The control space is not (a priori) a linear space. 
(ii) The solution US to the partial differential equation is not a ‘linear’ 

Instead of trying to solve (2.1) directly, by giving a linear structure to Y 
function of the control S. 

(Hausdorff metric for example), we shall relate it to the problem 

(4.1) 

for which a solution is known (see Lions 1968, chap. 2). The remaining difficulty, 
i.e. the effect of a small change of body shape from S into S’ on the distribution 
w of fluid speed on S ,  will be solved by means of a Taylor expansion, made 
possible from the assumption z E Hg(I’). 

Thus we shall prove the following theorem. 

THEOREM 1. Suppose that, in (2.1), z E H f ( l ? )  and S is parametrized by 
s E [0, 112. Then 

is a solution of (2.1) only if 
s = {X(S)lSE[O, 1 ] 2 } € Y  (4.21 

Js llg /I a(s) ds + c~(o1) 0 for all admissible a’s, (4.3) 

where aUs/an is the derivative of the speed distribution Us, the weak solution 
of ( 3 4 ,  along the outward normal n to S ;  the set of admissible a’s is 

(al(x(s)+n(s>a(s>l s E [ O ,  1 I 2 } E Y }  

and ~ ( a )  is such that lim{I~(a)l/jlaljCB[o,112) = 0. 
U - t O  

I ( 1=1 

n 
t H;(Q)  = q5 E L,2(Q) E L:(Q) for all p = (p,, ..., p,) with p ,  = 1 , 

where the derivatives DP = apl+P*-.pn/axp.. .ax? &re in the distributions sense. 
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FIGURE 2.  If S (continuous line) is parameterized by s E [0, 112, a given function 
x :  [0, 112 3 R defines a perturbation S' (dotted line) by the formula 

S' = (S'(s)lS'(s) = & s ) + a ( s )  h(s), s E [0, 112}. 

Proof. In  order to simplify our equations, we introduce the notation 

where US = (uf, uf, uf) is the weak solution of (3.5). 
Clearly, S is a solution of the optimization problem (2.1) only if 

S,,, ES'(~) da IRg E S ( ~ )  for all S' E .Y (4.5) 

Us' is defined only outside S' but it is shown in the appendix that we can extend 
the definition of US'(x) to  all points x inside X', but outside S, and keep the 
property UEH~(Q,  u as). Hence (4.5) can be rewritten as 

Es(x) dQ -1 Es.(x)dQ] 2 0 
Rg-Rs' n RS Rg-ng' n Rg 

for all S ' E ~ .  (4.6) 

Let n be the outward normal to S at g. Let g' be the intersection of n and 8'; 
let a and /3 be such that (see figure 2) 

[S Sag (ES'(x)-ES(x))dQ- 

x = g+n/3, g' = g+na. (4.7) 

From (4.7), there is a one-to-one correspondence between the surface 8' (close 
to S )  and the functions a: [ O ,  112 + R. We shall now relate the first and second 
terms in (4.6) with a( ). 

According to corollary I. 9 . 1  in Lions & Magenes (1967), every function in 
Hg( a) is almost everywhere continuously differentiable.? Therefore, from the 
mean-value theorem for integrals, 

ES'(x)dQ =~SES.( f (S))a(s)dS+a(a,oi ,a) .  
R,!f--n,q n 615 

j E"(x)dQ-j 

(4.8) 
ns-as' n as 

t This is why we require z E H)(I ' ) .  
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The first term of (4.6) can be evaluated as follows. Let W = {Us’/, JS‘ESP) and 
let 8: W --f R be defined by 

where (uy, uy, ur) = U” is a weak solution of 

VzU = Qp, V.U = 0 in Q; U/,=  W E W ,  U ] ,  = z .  (4.10) 

(4.11) Then 

where w‘ = Uflls.&( ) is a quadratic continuous function from H j ( S ) ;  therefore, 
its variations can be evaluated as follows (see Lions 1968, chap. 2): 

[E”’(x) - E”(x)] dQ = &(w’) - &(O), s,, 
B(w’) - &(w) 

)(Z g) =Jn3,X1 3 8  (Zi(u~’-q)+-(uy’-u?) a --+--2. dQ+o(w’-w). axi 
(4.12) 

By integrating the:right-hand side by parts, (4.12) becomes 

(uY’- u?) d(aQ)i  + O(W’ - w). (4.13) 

AS V.U = 0 we find 

- j ,  ZV2UU‘U 

3 a2u. 
j= ax, axj that C 3 = 0; hence (4.13) becomes 

(W’ - UT”) dQ - ~ Q ‘ ~ ( U ~ ~ ’ -  Uw) dS + O(W’ - w), (4.14) L”r 
where cij = aui/axj + auj/axi. 

By making use of V2U = V p  and by integrating by parts, (4.14) becomes 

2pwV.(Uw‘-UW)dQ-2 (-pwI +aw) ( U ” ” - U w ) d S + ~ ( ~ ’ - ~ ) .  (4.15) s, . l s u r  

Hence, since V . U = 0 and U‘”’ = U1” on r and U”’ - Uw = w‘ - w on S, 

€(W’) - &(W) = - 2 ( -ptuI + ow) (w’ - W) d S  + O(W’ - w). (4.16) Is 
Now, US’ belongs to Hg(Q), h.ence it also belongs to Ci(n) (corollary 9.1 in 

Lions & Magenes 1967). Therefore from a Taylor expansion 

Hence from (4.11), (4.16) and (4.17) 
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On optimum projiles in Stokes flow 123 

It is shown in the appendix that [aUs‘/an], is weakly continuous in a, therefore 
(4.6), (4.8) and (4.18) imply that 

(4.19) 
aus 

for all admissible a. 
Now, USIS = 0 and V.Us = 0 imply that 

Es(x) = 11 aUs/anl/2 a t  x E 8, (4.20) 

- a s = - d S = O  au au?l on S ,  
an an 

.. . I  

Hence (4.20) becomes 

aus CI dS + ~ ( a )  3 0 for all admissible a, s,ll=ll 

(4.21) 

(4.22) 

(4.23) 

which completes our proof. 

COROLLARY 1. If Y i s  the set of bodies of unit volume, S is optimal for (2.1) only 
i f  jlaU/anlls is constant almost everywhere on S. 

Proof. For e, s’ and S“ given, define a,( ) by 

(4.24) 1 
em-1exp[(m-2-p2)-1] on s = s’+p(cosO,sin8), 

- em-lexp [(m-2 --p2)-l] on s = s” + p(cos 8, sin 8 ) )  
G m-1, ~ E [ o , ~ ~ T T ] ,  

a,(s) = 

IpI 6 m-l, 8 €  [O ,  2n], 1 0 otherwise. 

Up to second-order terms in elm, a is admissible, in particular it allows almost 
no change of volume; hence, when m -+ co equation (4.23) becomes 

(4.25) 

for all e, s’ and S” for which aU/an is continuous. Upon changing e into - c  
equation (4.25) becomes 

(4.26) 

5. Approach to the unit-volume body with minimum drag in Stokes 
flow 

It is beyond the scope of this paper to discuss whether the previous computa- 
tions remain valid for unbounded domains Q; we shall assume this, although it 
is not essential for the following discussion. Thus the body S with unit volume 
and smallest drag in a uniform fluid in slow motion U ,  must satisfy 

j l  aU/anll = constant almost everywhere on S, (5.1) 
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124 0. Pironneau 

where U is the weak solution of 

v2u = vp, v.  u = 0;  UI, = 0, u, = u,. (5 .2)  

The problem of finding the X's that satisfy (5.1) and (5 .2 )  and enclose unit 
volume is far from being trivial. We made several attempts at  obtaining a solu- 
tion of (5.1) and (5.2) in closed form: all of them failed. However, before pro- 
ceeding any further, we shall make the following comments: if (5.1) and (5.2) 
has a unique solution S, then (i) S is axisymmetric and has a centre of symmetry 
(since (5.1) and (5.2) are invariant under rotations and a change of sign of Uo); 
(ii) the front and rear ends of S must each be tangential to a cone of angle l 2 O O . t  
Indeed, if they are smooth, aU/an = 0 a t  those points; if they are shaped like 
cusps I]aU/anll = +a. If the front end of S is a cone of angle 4, let $ be the 
stream function of the problem$ and let the origin be at  the front end of 8, then 
$1, = 0 implies that the first-order term of the Taylor expansion, in r ,  of $ 
has the form r*f (0), and we find that cr3(cos 0 sin 0 + 8 sin2 &9), c constant, are the 
only solutions of 

for which 

is constant at 8 = 0,. 
Apart from those comments, any other information about S must be found 

with the help of numerical methods. 
A quick look at  the literature for similar problems in optimal control theory 

(see, for example, Polak (1971)) tells us that an algorithm of the following type 
is likely to converge to the solution of (5.1) and (5.2) if one exists. 

E4(mf(B)) = 0;  f(0,) = 0, r"-'f(0,) = 0, (5.3) 

IjaU/anll = clE2(m*f(B))/r sin 01 

ALGORITHM 1. 
Step 0. Choose an initial body So (sphere of unit volume for example); set i = 0. 
Step 1. Compute Ui by solving (5 .2 )  with S = Si. 
Step 2. Compute I/ aUsi/anll on Si. 
Step 3. Set #(A)  = (xlx = p[x(s) -ai(s)n(s)]}, where n(s) is the outward 

normal to Si at x(s), ai(s) = A(llaUs~(x(~))/anJ/2-ki), ki is the mean value of 
11 aUSi/Lhjl on Si and /? is such that the volume enclosed by Xi is unity. 

Step 4. Compute hi, the solution of 

t This point is due to Sir James Lighthill. 
1 If $: R2 + R is a solution of 

E4$ = 0; $18 = 0,  [a$/a~~]s = 0, $m = 2p2Vo++'; 

where, in cylindrical co-ordinates ( z ,  m, 4 )  

Then, if S is axisymmetric around U,, 

is a solution of (5.2).  

section search or replaced by a two-line rule (see Polak 1971, pp. 31, 36). 
§ This one-dimensional minimization problem can be solved by means of a golden- 
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I 
I 

FIGURE 3. d is conjectured to lie within 5% of the solution of (5.1) and (5.2) if any exists. 
So is the prolate spheroid with smallest drag. 

Step 5. Set Xi,l = S(hi) and go to step 1. 
Algorithm 1 is a straightforward adaptation to our problem of the gradient 

algorithms for optimal control; it generates a sequence of bodies 8, with smaller 
and smaller drags. Indeed,from ( 4 4 ,  (4.23) and the fact that the volume enclosed 
by Si+, is unity 

where a: = /[aUsi/an[I2-ki; this together with (5.4) and (2.2) implies that 

Thus, it is theoretically possible to program algorithm 1 on a computer in 
order to find a solution of (5.1) and (5.2); however, step 3 requires an accurate 
knowledge of the solution of (5 .2 ) ,  which, in turn, is extremely difficult to 
achieve (although possible). Since we did not have any good subroutine to 
integrate (5.2), we did not make any attempt at  programming algorithm 1. 

However, we shall now perform by hand an iteration of algorithm 1 starting 
with 

So is the prolate spheroid with smallest drag (F  = 95.61 % of that for the sphere 
of equal volume) and the stream function of the flow around it is known analytic- 
ally (see Happel & Brenner 1965, p. 153): 

Fsi+i 6 Fsi. 

so = { q r ,  e) = ( I  - 0.74 cos2 q-s, eE [o, 2..1>. 

(Iau/&/[ = 1.04 sin 6( 1 - 0.74 C O S ~  8)-l ( ( 1  uol[ = l).? (5.6) 

Therefore, from step 3, the body S,  obtained from So by adding onto the outward 
normal of So the quantity in (5.7) below will be an improvement over So: 

-h(l[XJ/an[12-kJ = h[1-15- 1 - 0 4 ~ i n ~ ~ ( l - O ~ 7 4 c o s ~ 8 ) - ~ ] ,  (5.7) 

t Note that I(aU/au((s lies within 10 % of its mean on 70% of So. Therefore So is already 
a good approximation to the solution of (5.1) and (5.2). 
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where h is a solution of (5.4). We have drawn on figure 3 the surfaces obtained 
for different values of A. The most likely value for A, i.e. the one that gives the 
smoothest curve and yet fairly sharp front and rear ends, is h = 0.2, €or which, 
from (5.7)) the drag on the corresponding body is of the order of 91 yo of the 
drag on the sphere of equal volume. This and the fact that gradient methods in 
optimal control converge generally like a geometric progression lead us to believe 
that the surface with h = 0.2, further improved by conical front and rear ends, 
is a good (say 5 yo) approximation to the solution (if any !) of (5.1) and (5.2); 
its drag is probably around 90 yo of that on the sphere of equal volume. Those 
figures are slightly above those given by Watson (1971); the shape we obtain 
is different from the 'flat eight' shape obtained by Watson. We must credit this 
difference to the fact that Watson did not try bodies with pointed ends. 

6. Other minimum-drag problems 
(i) The minimum-drag problem for axisymmetric unit-volume bodies at  the 

centre of an infinitely long tube is treated in exactly the same fashion. The 
optimality condition is also I/aU/anll = constant on S ,  which implies that the 
solution looks like the one drawn on figure 3 but becomes more slender as the 
diameter of the tube becomes smaller. 

(ii) Given a body X (not necessarily axisymmetric), can one find an outer 
surface S containing X in its interior and such that the magnitude of the drag 
on S is smaller than that on I;? From theorem I ,  it is straightforward to show 
that the velocity field for S must satisfy the Stokes equations and 

IjaUs'/anjl = 0 (6.1) 

at almost all points of X which do not belong to 2. 
(iii) The optimality conditions for the minimum-drag problem for bodies with 

unit surface area can be obtained from theorem 1. One should proceed as in the 
proof of corollary 1 with S' obtained from S by adding a small bump on one side 
and replacing a part of S by a plane section somewhere else. In the case of 
axisynimetric bodies, the condition obtained depends on the radius of curvature 
R of S,  i.e. 

RJl aUs/an/l = constant 

at almost every point of S where R is finite. 

7. Conclusion 
The method we have used to derive the optimality conditions above is quite 

natural for someone familiar with the techniques of the calculus of variations. 
It can be applied t o  problems with more complex unbounded operators, as long 
as it is possible to  ensure that the solutions of the partial differential equation are 
almost everywhere continuously differentiable. However, the optimality con- 
dition will, in general, depend on the solution of the adjoint equation of the 
system. 
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In spite of the nice form of our optimality condition we have only been able 
to conjecture the optimal shape of the unit-volume body with smallest drag in 
the Stokes flow, but we hope that someone in possession of the good numerical 
subroutine for the Stokes equation will be interested in programming algorithm I .  

I would like t o  thank Sir James Lighthill and Dr D. Weihs for their extremely 
helpful suggestions. 

Appendix VUS'I, is  weakly continuous in a 
From the definition of derivatives in the distribution sense it suffices to show 
that Us converges weakly to Us when a + 0. Let v s  be the solution of 

such that + l d Q S .  = 0, v.+  = 0. 

Let 4 be the extension of + by zero in Q,, = Qs u S. From theorem 1.11.4 in 
Lions & Magenes (1967), c$ E Ht(  Qo); therefore, replacing + by Bs (the extension 
by 0 of vs) in (A I )  we obtain 

which, from 1.1.7 in Ladyzhenskaya (1963), implies that {V'> is bounded in 
Hi( Qo). As every bounded set is weakly compact, we can extract a subsequence 
cli such that (V'>i converges weakly to w, say. It remains to prove that w is 
a solution of (A I )  with S' = S. Suppose it is not; then there exists an c and an 
+ E Hi(Qs) ,  with +Ians = 0 and V .  + = 0, such that 

and from the weak convergence of vS' to W, 

for cli sufficiently smha;ll. Since S' converges to S, there exists an open set 0 in 
Qs n fist such that lQjl > 0 in 9. If x is a smooth funotion into R wkth compact 
support in 0 and such that V . $x = 0 then (A 1) holds with + = Qjx and it is 
contradicted by (A 5). 

11 aU/anll = 0 on X implies zero drag, in an  unbounded domain (X axisymmetric) 

The drag force P on a body with surface S is computed from 
r 

F = J ( - p i + o ) d s ,  
s 
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where I is the identity tensor and Q is as in (4.14) (stress tensor). V . U = 0 and 
I[ aU/anll = 0 implies that aIS = 0. If $ is the stream function of the problem, 
then E2$ is a solution of 

Ez(E2$) = 0;  E2$Is = 0, E2$lm = 0. 

Hence E2$ E 0, which implies (from 4.15.1 in Happel & Brenner 1965) that 
p is constant. Hence F = 0. 

US can be extended in Hg(s1), slightly inside S 

To extend US slightly inside S in e(Q), we must look for a solution U of 

where 0 is an open set of R3 with boundary S u G, where G c i!J with G regular; 
n, and n, are the inward and outward normals of S. 

From theorem 1.8.2 in Lions & Magenes (1967) and theorem 1.(2.2).1 in 
Ladyzhenskaya (1963), there exists a 4 EH:(O) with 

Therefore, if we let w = U - 4, we must show that 

~ 2 w - ~ p = f ,  v.w=O in O;  wlS=0, - - 0 ,  el = O  (AS)  an s an2 

has at  least one solution in H!(S) .  This is done by a variational method which can 
be shown to work by a straightforward adaptation to our problem of the proofs 
of lemma 4.8.1. and remark 4.8.3 in Lattes & Lions (1969). 
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