https://doi.org/10.1017/5002211207300145X Published online by Cambridge University Press

J. Fluid Mech. (1973), vol. 59, part 1, pp. 117-128 117

Printed in Great Britain

On optimum profiles in Stokes flow

By O. PIRONNEAU

Department of Applied Mathematics and Theoretical Physics,
University of Cambridge

(Received 1 December 1972)

In this paper, we obtain the first-order necessary optimality conditions of an
optimal control problem for a distributed parameter system with geometric
control, namely, the minimum-drag problem in Stokes flow (flow at a very
low Reynolds number). We find that the unit-volume body with smallest drag
must be such that the magnitude of the normal derivative of the velocity of the
fluid is constant on the boundary of the body. In a three-dimensional uniform
flow, this condition implies that the body with minimum drag has the shape of
a pointed body similar in general shape to a prolate spheroid but with some dif-
ferences including conical front and rear ends of angle 120°.

1. Introduction

Despite the simplicity of the partial differential equations that describe the
motion of a viscous fluid at zero Reynolds number, it has not been possible, so
far, to discover the shape of the body of given volume which produces minimum.
drag when moving slowly through a viscous fluid at constant speed. Among other
attempts at solving the problem, we recall the works of Watson (1971) and
Tuck (1968). By merging the variational maximum principle for the Stokes
equations and a numerical minimization procedure, Watson obtained an
algorithm which selects the best shape out of a given family of surfaces depending
on a finite number of parameters. Unfortunately, Watson did not try it on surfaces
with sharp ends. By assuming that the stream function for an arbitrary axisym-
metric body can be expressed in terms of point sources and ‘Stokeslets’, Tuck
derived a pair of nonlinear integral equations which characterize the optimum
shape. However, owing to their complexity, these equations remain unsolved.

In the theory of calculus of variations, the minimum-drag problem in Stokes
flow is classified as an ‘optimal control problem for a distributed parameter
system, the control being a geometric element of the system’. Lions (1972)
obtained an existence theorem for a problem of similar nature, but, as far as
we know, first-order necessary optimality conditions for this problem have not
been given. Hence, part of the interest of this paper lies in its contribution to
optimal control theory, while part is of direct fluid-mechanical interest. We
preferred to present the results for both fields in one paper only, essentially
because the generalization of the results to more complex optimal control
problems is straightforward.

The subject treated in this paper is at the border of two research fields; optimum
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problems in Stokes flow are indeed mathematically difficult and because of
this we could not avoid use of the theory of partial differential equations in weak
form and of their Sobolev spaces. Hence, after having stated the problem in § 2,
we begin by recalling some of the properties of the weak solutions of the Stokes
equations (see §3). In §4, we obtain the first-order necessary optimality condi-
tions of the above optimal shape of the Stokes minimum-drag problem under
volume constraints. These conditions are simple and lead naturally to the con-
struetion of numerical methods for solving them. This is done in § 5 but, lacking
a numerical subroutine to integrate the Stokes equations in an unbounded
domain, we have not programmed the algorithm derived. However, §5 contains
an argument which enables us to conjecture (to a good approximation) the
optimal shape. Lastly, in §6, we examine a few other minimum-drag problems
in Stokes flow. In particular, we give the optimality conditions for the body of
unit surface area which has minimum drag.

2. Statement of the problem
Consider the optimal control problem

] 1 3 (ou, au
mm{ PO dQIVZU Vp, V.U = 0 almost everywhere in Q;
Se& 245=1 637 a Ly

Uls =0, Ulp = z}, 2.1)

where & is a given subset of the set of almost everywhere infinitely continuously
differentiable surfaces in 23; Q is the open set of B® with boundary 6Q2 = I"U S;
U = (uy, Uy, #5) is & weak solution (see next section) of the partial differential
equations above (the Stokes equations with viscosity one); and z is a given
funetion in H¥(T).t

In particular, if & is the set of boundaries of bodies with unit volume, and T
and z are as in figure 1, for large Q) (and S centrally located), problem (2.1)
approaches the Stokes minimum-drag problem. Indeed, the partial differential
equations in (2.1) describe the motion of a viscous fluid with speed U(x) and
pressure p(x) at X € Q, in the (stationary) Stokes approximation (low Reynodsl
number); and the cost in (2.1) is the rate of energy & dissipated by the fluid, which
in our case is related to the magnitude of the drag force F on S, by the formula

& = U, F +higher order terms in d + terms independent of S, (2.2)

where U, is the magnitude of the (uniform) speed in the fluid far from S, d is the
ratio of the volume enclosed by S to that enclosed by Q, when S is ‘centrally’
located in Q.

Since (2.1} is an optimal control problem almost in the form studied by Lions
(1968), we shall use some of the standard techniques of the field. Therefore we
shall begin by recalling some properties of the partial differential equations in
weak form.

1 H™(T') is the Sobolev space of order m on I' (see Lions 1968 p- 39). It suffices here to
know that the speed distribution z in figure 1 belongs to H¥T).
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FicUrE 1. A possible design for the study of the drag on 8. The fluid inside ¥ is maintained
at slow motion by the pump O (a rotating cylinder for example). S is very small compared
with X so that the motion is almost uniform far from 8. In thiscase, ' = Zy ¢,z = 0
on X,z = wxz, at xeC, where w is the angular velocity of C.

3. The Stokes equations in weak form

Let C(Q)) be the space of m times continuously differentiable functions from
Q into R, Suppose that Ue C}(Q) and pe 0}(Q) are such that

VU =Vp, V.U=0 everywherein Q. (3.1)
Then, by multiplying (3.1) by ¢ € D}(Q), where

DY) = {$peC(Q)X[(¥) + 0} < Q, V. ¢ = 0}, (3.2)

and by integrating by parts, one obtains
f U.V2dQ — 0. (3.3)
Q
Conversely, if U satisfies (3.3) for all ¢p e D}(Q) and

f U.n.[;dl’:f z.pdl forall YeCP(TusS) with $.dS =0,
TusS r T'uS
(3.4)

then U satisfies (3.1) almost everywhere V32U exists, and is said to be the weak
solution of

V2U=Vp, V.U=0 in Q; Ulg=0, U=z (3.5)
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Let Z be an extension in H3(Q)T of z such that V.Z = 0 in Q (there exist such
extensions; see Ladyzhenskaya 1963) and let V be a solution of the variational
equation

3 o0,
fm’zlaz ai’@dﬂ f¢szdQ forall @e{pecHYQ)|V.b = 0; @|sq = O}
(3.6)

It is easy to show that (3.6) has a unique solution V in H}(Q) (see theorem I1.1.2
in Lions 1968) with V|,, = 0 and V.V = 0. Hence V+Z is the unique weak
solution, in H3(Q), of (3.5).

4. Optimality conditions for problem (2.1)

Problem (2.1) is a problem of optimal control of a system governed by a linear
elliptic partial differential equation and with quadratic cost, but the control is
a geometric element of the system. Therefore, we must face two difficulties.

(i) The control space is not (a priors) a linear space.

(ii) The solution US to the partial differential equation is not a ‘linear’
function of the control 8.

Instead of trying to solve (2.1) directly, by giving a linear structure to &
(Hausdorff metric for example), we shall relate it to the problem

3
min[ E (au ) dQleU V_p, V.U= O, UIS= w, U,F =Z},
welv Q 4,7=1 ox o Z;

(4.1)

for which a solution is known (see Lions 1968, chap. 2). The remaining difficulty,
i.e. the effect of a small change of body shape from § into 8’ on the distribution
w of fluid speed on 8, will be solved by means of a Taylor expansion, made
possible from the assumption ze H{(T').

Thus we shall prove the following theorem.

TaeoreEM 1. Suppose that, in (2.1), ze H¥(T) and § is parametrized by
s &[0, 1]2. Then

S = {x(s)[se[0, 1F}e S (4.2)
is a solution of (2.1) only if
2US |2 ]
f . a(s)ds+o(a) > 0 for all admissible o’s, (4.3)
]

where 9US/dn is the derivative of the speed distribution US, the weak solution
of (3.5), along the outward normal n to §; the set of admissible o’s is

{a]{x(s)+n(s)a(s)| s€[0, 1]} S}
and o(a) is such that lino1 {lo(@)|/llo] oago, 112} = O-

t HLYQ) = {¢ € LX(Q) |DP$ e L2(Q) for all p = (py, ..., P,) With lglpl = 1} ,

where the derivatives DF = 9m+2e-2nfoxps. . 07 are in the distributions sense.
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Ficure 2. If S (continuous line) is parameterized by s €[0, 112, a given funection
x: [0, 112 - R defines a perturbation 8 (dotted line) by the formula

S = {§'(s)|E'(s) = §(s)+a(s) h(s), s [0, 1]}

Proof. In order to simplify our equations, we introduce the notation

1 3 [ouf(x) ouf(x)\?
S(x) = = 3 :
7 21:521( oz, | ox; ) xe L, (4.4)

where US = (uf, u§, u§) is the weak solution of (3.5).
Clearly, S is a solution of the optimization problem (2.1) only if

ES(x)dQ > E3(x)dQ forall S'e. (4.5)
Qg Qg
U*' is defined only outside 8’ but it is shown in the appendix that we can extend
the definition of US'(x) to all points x inside S’, but outside S, and keep the
property Ue H3(Qg U Qg). Hence (4.5) can be rewritten as

(BS (x) — BS(x)) dQ — [ f ES(x)dQ— ES(x) dQ] >0

Qs—05’0Qg Q5-Q8 008

forall §'e¥. (4.6)

Let n be the outward normal to 8 at €. Let &' be the intersection of n and §’;
let « and £ be such that (see figure 2)

x=E+nf, & =E+na. (4.7)

From (4.7), there is a one-to-one correspondence between the surface S’ (close
to 8) and the functions a: [0, 1]2 - R. We shall now relate the first and second
terms in (4.6) with a( ).

According to corollary I.9.1 in Lions & Magenes (1967), every function in
H3(Q) is almost everywhere continuously differentiable. Therefore, from the
mean-value theorem for integrals,

[oX]

f BS(x)dQ - BS(x)dQ = f BS(E(s)) a(s) dS + (0, &, 5).
Qs—Qg nQg Q3" —Q8'nQg s (4 8)

+ This is why we require z € HE (D).
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The first term of (4.6) can be evaluated as follows. Let W = {U%]|¢|8" €&} and
let &: W — R be defined by
1 3 wy  ouy\?
E(wW) = f 7,2 ( —7) o, (4.9)

ox;  ox;

where (uf’, uy, uy) = U¥ is a weak solution of

VU=Vp, VU=0 in Q; Ulg=weW, Ulp=2z  (4.10)
Then [BS (x)— ES(x)]dQ = &(W')—&£(0), (4.11)
Qg

where w’ = US|4.&( ) is a quadratic continuous function from H(S); therefore,
its variations can be evaluated as follows (see Lions 1968, chap. 2):

EW')— E(W)

=J;) ‘E (a—fg—i(u” “’)+3 (uy —uf ))(%—kaaw)dﬂ-i—v(w’—w).

4,5=1 s 4
(4.12)

By integrating theright-hand side by parts, (4.12) becomes

3 O o2uw Wy
—f921§1(3702 B o )(u Y dQ
3 ¥ w
r2| 3 ( i ";“ )(u u?) d(0Q); + T (W' —wW).  (4.13)
=1 Xy

3
As V.U = 0 we find that ¥}

L = 0; 4.1
=1 396,5 o ; hence (4.13) becomes

J
— f 2veUw. (Uw — U*)dQ — f 20(U% — U*)dS + o(W' — W), (4.14)
Q Sur
where o7y; = u,[0x; 4 ou;[ox;.
By making use of VU = Vp and by integrating by parts, (4.14) becomes

f prV.(Uw'—UW)dQ—Zf (—p*l +0%) (UY — U)dS + o(wW' —w). (4.15)
Q

gur
Hence, since V.U =0and U¥ = U¥onTand U¥ -U% = w' —won S,

EWY—E(W) = — Zfs (—pV 4+ 6¥) (W —~W)dS + o(W —w). (4.16)

Now, U¥ belongs to H3(Q), hence it also belongs to C3(Q) (corollary 9.1 in
Lions & Magenes 1967). Therefore from a Taylor expansion

S

) , ous|, 0
w =U%g = USIS'*TI‘ a+o(x) = &7
7 s

Em o+ o(a). (4.17)

I

Hence from (4.11), (4.16) and (4.17)

o
ES(x)dQ—] ES(x)dQ = +2f (—pSl+aS)%adS+o‘(cx). (4.18)
5

Qg Qg
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It is shown in the appendix that [0US [on] is weakly continuous in «, therefore
(4.6), (4.8) and (4.18) imply that

2f (- SI+cS)£<de+o~( o) = faES( YdS +0'(e) (4.19)
S S

for all admissible a.
Now, US|g = 0 and V.US = 0 imply that

ES(x) = |oUS[on|® at xe8, (4.20)
@ds aU” dS=0 on &, (4.21)
on
c@ds = H@H dS on 8. (4.22)
Hence (4.20) becomes
US|z
f o adS+o(x) > 0 for all admissible a, (4.23)
8

which completes our proof.

CorOLLARY 1. If & is the set of bodies of unit volume, S is optimal for (2.1) only
if |6U/én||S is constant almost everywhere on S.
Proof. For ¢, 8’ and 8” given, define ., ( ) by

emtexp [(m~2—p?)~1] on § = 8’ +p(cosb,sinb),
lp| <m=, 0€[0,27],
o, (8) = { —em~texp[(m~2—p*~'] on s = 8" +p(cosb,sinb), (4.24)
lp| <m1, Oe(o, 2a],
0 otherwise.

Up to second-order terms in ¢/m, « is admissible, in particular it allows almost
no change of volume; hence, when m — c0 equation (4.23) becomes

[ ouU 18)
6 — —

o |2 s)

on
for all ¢, s’ and s” for which dU/én is continuous. Upon changing e into —e
equation (4.25) becomes

o] -|2

on

2] >0 (4.25)

ou

', 8", 4.2
o for almost all s, s (4.26)

(s”)

5. Approach to the unit-volume body with minimum drag in Stokes
flow

It is beyond the scope of this paper to discuss whether the previous computa-
tions remain valid for unbounded domains Q; we shall assume this, although it
is not essential for the following discussion. Thus the body § with unit volume
and smallest drag in a uniform fluid in slow motion U, must satisfy

[éU/én| = constant almost everywhere on S, (5.1)
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where U is the weak solution of
ViU =Vp, V.U=0; Ulg=0, U,=1, (5.2)

The problem of finding the §’s that satisfy (5.1) and (5.2) and enclose unit
volume is far from being trivial. We made several attempts at obtaining a solu-
tion of (5.1) and (5.2) in closed form: all of them failed. However, before pro-
ceeding any further, we shall make the following comments: if (5.1) and (5.2)
has a unique solution 8, then (i) § is axisymmetric and has a centre of symmetry
(since (5.1) and (5.2) are invariant under rotations and a change of sign of U);
(ii) the front and rear ends of § must each be tangential to a cone of angle 120°.1
Indeed, if they are smooth, 0U/én = 0 at those points; if they are shaped like
cusps [|6U/én| = +co. If the front end of § is a cone of angle 6,, let ¥ be the
stream function of the problem] and let the origin be at the front end of S, then
¥/|s = 0 implies that the first-order term of the Taylor expansion, in 7, of ¥
has the form r*f(6), and we find that cr3(cos §sin 6+ § sin? £6), ¢ constant, are the
only solutions of

Ermf(0)) = 05 f(6,) =0, r7f(6,) =0, (5.3)
for which [[6U/en| = c|E2(r*f(0))[rsin 6]
is constant at 8 = 0,.

Apart from those comments, any other information about § must be found
with the help of numerical methods.

A quick look at the literature for similar problems in optimal control theory
(see, for example, Polak (1971)) tells us that an algorithm of the following type
is likely to converge to the solution of (5.1) and (5.2) if one exists.

AvgorIiTHM 1.

Step 0. Choose an initial body S, (sphere of unit volume for example); set ¢ = 0.

Step 1. Compute U, by solving (5.2) with § = §,.

Step 2. Compute |[§USi/on|? on 8.

Step 3. Set S(A) = {X|x = B[x(s) —,(s)n(s)]}, where n(s) is the outward
normal to S; at X(8), a,(8) = A(||dUSi(x(s))/on|2—k;), k; is the mean value of
| #USi/on|? on 8; and £ is such that the volume enclosed by 8S; is unity.

Step 4. Compute A;, the solution of

i ES® .
m;n: f . (x)dQ| Ao, 1]} $ (5.4)

+ This point is due to Sir James Lighthill.
1 If ¢: R? - R is a solution of

E‘E& = 0; lb’ls = 0, [al)b./an]s =0, lﬁw = *21‘172170-{—0’;
where, in ¢ylindrical co-ordinates (2, w, ¢)

o (1 @ ot
E = —
7 o ow (‘w 3‘w) + 0Oz?

Then, if S is axisymmetric around U,,

&
U={|—~—
( w 0w lﬁ’ w oz’
is a solution of (5.2).

§ This one-dimensional minimization problem can be solved by means of a golden-
section search or replaced by a two-line rule (see Polak 1971, pp. 31, 36).
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o
Fioure 3. § is conjectured to lie within 5%, of the solution of (5.1) and (5.2) if any exists.
8, is the prolate spheroid with smallest drag.

Step 5. Set §;,; = 8(A;) and go to step 1.

Algorithm 1 is a straightforward adaptation to our problem of the gradient
algorithms for optimal control; it generates a sequence of bodies §; with smaller
and smaller drags. Indeed, from (4.5), (4¢.23) and the fact that the volume enclosed
by 8, is unity

oUs:

ESi(x) dQ~f ERi(x)dQ = _Aifs,-( on

Q;

2
—Ici) a; dS +o(a;, 1),

Q41

where o} = [[0USi[on|2—k;; this together with (5.4) and (2.2) implies that
FSi1 < FSi,

Thus, it is theoretically possible to program algorithm 1 on a computer in
order to find a solution of (5.1) and (5.2); however, step 3 requires an accurate
knowledge of the solution of (5.2), which, in turn, is extremely difficult to
achieve (although possible). Since we did not have any good subroutine to
integrate (5.2), we did not make any attempt at programming algorithm 1.

However, we shall now perform by hand an iteration of algorithm 1 starting
with

8, = {x(r,0)|r = (1—0-T4cos20)~%, 60, 27]}.
S, is the prolate spheroid with smallest drag (F = 95-61 %, of that for the sphere
of equal volume) and the stream function of the flow around it is known analytic-
ally (see Happel & Brenner 1965, p. 153):

|6U/8n| = 1-04sin6(1 —0-Tdcos?0)2 (| U,| = 1).1 (5.6)

Therefore, from step 3, the body 8, obtained from §, by adding onto the outward
normal of S, the quantity in (5.7) below will be an improvement over S;:

— A(|éU/on|2— k;) = A[1-15 — 1-04sin26(1 — 0-74 cos? )], (5.7)

+ Note that ||6U/u|? lies within 109, of its mean on 709, of ;. Therefore S, is already
a good approximation to the solution of (5.1) and (5.2).
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where A is a solution of (5.4). We have drawn on figure 3 the surfaces obtained
for different values of A. The most likely value for A, i.e. the one that gives the
smoothest curve and yet fairly sharp front and rear ends, is A = 0-2, for which,
from (5.7), the drag on the corresponding body is of the order of 919, of the
drag on the sphere of equal volume. This and the fact that gradient methods in
optimal control converge generally like a geometric progression lead us to believe
that the surface with A = 0-2, further improved by conical front and rear ends,
is a good (say 59%,) approximation to the solution (if any!) of (5.1) and (5.2);
its drag is probably around 90 9, of that on the sphere of equal volume. Those
figures are slightly above those given by Watson (1971); the shape we obtain
is different from the ‘flat eight’ shape obtained by Watson. We must credit this
difference to the fact that Watson did not try bodies with pointed ends.

6. Other minimum-drag problems

(i) The minimum-drag problem for axisymmetric unit-volume bodies at the
centre of an infinitely long tube is treated in exactly the same fashion. The
optimality condition is also |0U/on|| = constant on S, which implies that the
solution looks like the one drawn on figure 3 but becomes more slender as the
diameter of the tube becomes smaller.

(ii) Given a body X (not necessarily axisymmetric), can one find an outer
surface § containing X in its interior and such that the magnitude of the drag
on 8 is smaller than that on X? From theorem 1, it is straightforward to show
that the velocity field for § must satisfy the Stokes equations and

[oUS[on]| = 0 (6.1)

at almost all points of § which do not belong to =.

(iii) The optimality conditions for the minimum-drag problem for bodies with
unit surface area can be obtained from theorem 1. One should proceed as in the
proof of corollary 1 with S’ obtained from § by adding a small bump on one side
and replacing a part of § by a plane section somewhere else. In the case of
axisymmetric bodies, the condition obtained depends on the radius of curvature
Rof8, ie.

R|6US/on)? = constant

at almost every point of § where R is finite.

7. Conclusion

The method we have used to derive the optimality conditions above is quite
natural for someone familiar with the techniques of the calculus of variations.
It can be applied to problems with more complex unbounded operators, as long
as it is pessible to ensure that the solutions of the partial differential equation are
almost everywhere continuously differentiable. However, the optimality con-
dition will, in general, depend on the solution of the adjoint equation of the
system,
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In spite of the nice form of our optimality condition we have only been able
to conjecture the optimal shape of the unit-volume body with smallest drag in
the Stokes flow, but we hope that someone in possession of the good numerical
subroutine for the Stokes equation will be interested in programming algorithm 1.

I would like to thank Sir James Lighthill and Dr D. Weihs for their extremely
helpful suggestions.

Appendix

VU | is weakly continuous in o

From the definition of derivatives in the distribution sense it suffices to show
that US" converges weakly to US when a — 0. Let v¥ be the solution of

3 S’
f ov; a¢zdg @.VZdQ forall ¢peHQy) (Al
Q

1= lax 0x; Qs
such that Plong =0, V.¢p=0.

Let q,‘) be the extension of o] by zero in Q= Qg U 8. From theorem I.11.4 in
Lions & Magenes (1967) ¢ e H}{(Qy); therefore replacing ¢ by ¥% (the extension
by 0 of v¥) in (A 1) we obtain

3 (ov¥ .
> ( ) dQ =1 ¥.V¥%dQ, (A 2)
Qq 1, 7=1 3%' Qo

which, from I.1.7 in Ladyzhenskaya (1963), implies that {¥5} is bounded in
H3(Q,). As every bounded set is weakly compact, we can extract a subsequence
a; such that {¥5}; converges weakly to w, say. It remains to prove that w is
a solution of (A 1) with 8’ = §. Suppose it is not; then there exists an ¢ and an
¢ e Hi(Qg), with ¢|,q, = 0and V.¢ = 0, such that

3, ow; 0, -
aQ — V2Z2dQiz e > 0, A3
Qg ]21 o0x; Bx qus (A 3)
or equivalently,
5 o, 0¢% 2 wan
QOMElax 8x aQ— Qo¢).Vde >e>0, (A 4)

and from the weak convergence of v&' to w,

3 W o6 n
f 0 %iga-{ $.vizdo|sE (A 5)

=
Qulax 0x; Qo 2

for o, sufficiently small Since S’ converges to S, there exists an open set ¢ in
Qs n QS such that ]qS[ > 0in @. If ¥ is a smooth function into B with compact
support in @ and such that V. ¢X = 0 then (A 1) holds with ¢ = ¢X and it is
contradicted by (A 5).

|6U/on| = 0 on 8 implies zero drag, in an unbounded domain (S axisymmetric)

The drag force F on a body with surface S is computed from

F =JS(—pl+c)dS,
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where | is the identity tensor and o is as in (4.14) (stress tensor). V.U = 0 and
|6U/én| = 0 implies that o|g = 0. If ¢ is the stream function of the problem,
then K2 is a solution of

EXExr) =0; Exlg=0, Ex|,=0.
Hence E%) = 0, which implies (from 4.15.1 in Happel & Brenner 1965) that
p is constant. Hence F = 0.
US can be extended in H3(Q), slightly inside S
To extend US slightly inside S in H3(Q), we must look for a solution U of

ou ous U o7UsS

2 — = 1 M = _— T e —— —_— 5 e———
ViU =Vp, V.U=0 in 0; Ulg=0, Tl = |y EmEl = e
(A 6)

where 0 is an open set of R® with boundary S U @, where G < S with @ regular;
n, and n, are the inward and outward normals of §.

From theorem 1.8.2 in Lions & Magenes (1967) and theorem I.(2.2).1 in
Ladyzhenskaya (1963), there exists a ¢ e H}(0) with

op|  oUS| o)  US

Pls=0 Zrl = Ty il )y VP @D
Therefore, if we let w = U — ¢, we must show that
. oW Pw
2w — — = . = —_— = — =
Viw-Vp=f, V.w=0 in 0; w|g=0, o | 0, e | 0 (AS)

has at least one solution in H3(®). This is done by a variational method which can
be shown to work by a straightforward adaptation to our problem of the proofs
of lemma 4.8.1. and remark 4.8.3 in Lattes & Lions (1969).
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